Mapping starting zone snow depth with a ground-based lidar to assist avalanche control and forecasting
暂无分享,去创建一个
David C. Finnegan | Jeffrey S. Deems | Karl W. Birkeland | Adam L. LeWinter | Peter J. Gadomski | D. Finnegan | A. LeWinter | J. Deems | K. Birkeland | Dominic Vellone | Ryan Evanczyk | P. Gadomski | Dominic Vellone | Ryan Evanczyk
[1] G. Statham,et al. Fatal Avalanche Accidents and Forecasted Danger Levels: Patterns in the United States, Canada, Switzerland and France , 2006 .
[2] Michael Lehning,et al. Spatial and temporal variability of snow depth and ablation rates in a small mountain catchment , 2010 .
[3] Michael Lehning,et al. A comparison of measurement methods: terrestrial laser scanning, tachymetry and snow probing for the determination of the spatial snow-depth distribution on slopes , 2008, Annals of Glaciology.
[4] Alexander Prokop,et al. Assessing the capability of terrestrial laser scanning for monitoring slow moving landslides , 2009 .
[5] C. Glennie. Rigorous 3D error analysis of kinematic scanning LIDAR systems , 2007 .
[6] D. Mcclung,et al. The Avalanche Handbook , 1993 .
[7] A. Prokop,et al. A HIGH RESOLUTION APPROACH TO DEFINING SPATIAL SNOW HEIGHT DISTRIBUTION IN AVALANCHE RELEASE ZONES FOR DYNAMIC AVALANCHE MODELING , 2010 .
[8] Mohamed Naaim,et al. Merging terrestrial laser scanning technology with photogrammetric and total station data for the determination of avalanche modeling parameters , 2015 .
[9] K. Birkeland,et al. Relating complex terrain to potential avalanche trigger locations , 2013 .
[10] D. Lichti,et al. Error Propagation in Directly Georeferenced Terrestrial Laser Scanner Point Clouds for Cultural Heritage Recording , 2004 .
[11] O. Pallara,et al. A new experimental snow avalanche test site at Seehore peak in Aosta Valley (NW Italian Alps)—part I: Conception and logistics , 2013 .
[12] T. Painter,et al. Lidar measurement of snow depth: a review , 2013, Journal of Glaciology.
[13] J. Schweizer,et al. Review of spatial variability of snowpack properties and its importance for avalanche formation , 2008 .
[14] A. LeWinter. Continuous Monitoring of Greenland Outlet Glaciers Using an Autonomous Terrestrial LiDAR Scanning System: Design, Development and Testing at Helheim Glacier , 2014 .
[15] Thomas Grünewald,et al. Dynamics of snow ablation in a small Alpine catchment observed by repeated terrestrial laser scans , 2012 .
[16] A. Prokop. Terrestrial laser scanning for snow depth observations: An update on technical developments and applications , 2009 .
[17] Positioning of Avalanche Protection Measures Using Snow Depth Mapping Via Terrestrial Laser Scanning , 2012 .
[18] J. Schweizer,et al. Snow avalanche formation , 2003 .
[19] J. Skaloud,et al. Accuracy Estimation for Laser Point Cloud Including Scanning Geometry , 2007 .
[20] Craig Glennie,et al. Rigorous error propagation for terrestrial laser scanning with application to snow volume uncertainty , 2015 .
[21] Karl W. Birkeland,et al. The spatial variability of snow resistance on potential avalanche slopes , 1995, Journal of Glaciology.
[22] J. Schweizer,et al. Snowpack properties for snow profile analysis , 2003 .
[23] E. Thibert,et al. Determining Avalanche Modelling Input Parameters Using Terrestrial Laser Scanning Technology , 2013 .