A theoretical study of the 1B2u and 1B1u vibronic bands in benzene

The two lowest bands, 1B2u and 1B1u, of the electronic spectrum of the benzene molecule have been studied theoretically using a new method to compute vibronic excitation energies and intensities. The complete active space (CAS) self-contained field (SCF) method (with six active π-orbitals) was used to compute harmonic force field for the ground state and the 1B2u and 1B1u electronic states. A linear approximation has been used for the transition dipole as a function of the nuclear displacement coordinates. Derivatives of the transition dipole were computed using a variant of the CASSCF state interaction method. Multiconfigurational second-order perturbation theory (CASPT2) was used to obtain absolute excitation energies (12 active π-orbitals). The results show that the approach works well. Vibrational progressions are well described in both bands and intensities, and energies are in agreement with experiment, in particular when CASPT2 derived geometries are used. One interesting result is that computed ve...

[1]  P. Wilkinson ABSORPTION SPECTRA OF BENZENE AND BENZENE-d6 IN THE VACUUM ULTRAVIOLET , 1956 .

[2]  T. M. Dunn,et al.  Rotational analysis of the 2600a absorption system of benzene , 1966, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[3]  J. Jortner,et al.  An experimental study of the higher excited states of benzene in a rare gas matrix , 1968 .

[4]  The estimation of equilibrium molecular structures from zero-point rotational constants , 1973 .

[5]  A. Cabana,et al.  The ν4 Vibration–Rotation Bands of C6H6 and C6D6: The Analysis of the Bands and the Determination of the Bond Lengths , 1974 .

[6]  Melvin B. Robin,et al.  Higher excited states of polyatomic molecules , 1974 .

[7]  T. Hänsch,et al.  High resolution two‐photon spectroscopy in the 1B2u state of benzene , 1976 .

[8]  N. Mikami,et al.  Vibronic coupling involving the ground states of benzene and naphthalene , 1976 .

[9]  On anomalies in the absorption spectrum of benzene vapor and the mechanisms of electronic relaxation , 1977 .

[10]  E. Pantos,et al.  The extinction coefficient of benzene vapor in the region 4.6 to 36 eV , 1978 .

[11]  G. Atkinson,et al.  The 260 nm absorption spectrum of benzene: Selection rules and band contours of vibrational angular momentum components , 1978 .

[12]  G. Atkinson,et al.  The 260 nm absorption spectrum of benzene: Remeasured band positions and refined assignments , 1978 .

[13]  G. Atkinson,et al.  The 250 nm absorption spectrum of benzene: Vibronic analysis☆ , 1978 .

[14]  K. Yoshihara,et al.  Nanosecond laser photolysis of the benzene monomer and eximer , 1980 .

[15]  Force field, dipole moment derivatives, and vibronic constants of benzene from a combination of experimental and ab initio quantum chemical information , 1981 .

[16]  L. Ziegler,et al.  The Vibronic Spectroscopy of Benzene: Old Problems and New Techniques , 1982 .

[17]  S. Rice,et al.  1B2u↔1A1g spectroscopy of jet‐cooled benzene: Single vibronic level fluorescence studies , 1984 .

[18]  G. Fischer Vibronic coupling : the interaction between the electronic and nuclear motions , 1984 .

[19]  Lorenz S. Cederbaum,et al.  Multimode Molecular Dynamics Beyond the Born‐Oppenheimer Approximation , 2007 .

[20]  Per-Åke Malmqvist,et al.  Calculation of transition density matrices by nonunitary orbital transformations , 1986 .

[21]  Włodzisław Duch,et al.  GRMS or Graphical Representation of Model Spaces , 1986 .

[22]  Y. Shen,et al.  Infrared–ultraviolet double resonance studies of benzene molecules in a supersonic beam , 1988 .

[23]  Björn O. Roos,et al.  The CASSCF state interaction method , 1989 .

[24]  Kerstin Andersson,et al.  Second-order perturbation theory with a CASSCF reference function , 1990 .

[25]  A. G. Ozkabak,et al.  A benchmark vibrational potential surface : ground-state benzene , 1991 .

[26]  J. Plíva,et al.  Infrared bands of isotopic benzenes : ν13 and ν14 of 13C6D6 , 1991 .

[27]  A. Hiraya,et al.  Direct absorption spectra of jet-cooled benzene in 130-260 nm , 1991 .

[28]  N. Handy,et al.  Higher analytic derivatives. IV. Anharmonic effects in the benzene spectrum , 1992 .

[29]  G. Herzberg,et al.  Molecular Spectra and Molecular Structure , 1992 .

[30]  Björn O. Roos,et al.  Second-order perturbation theory with a complete active space self-consistent field reference function , 1992 .

[31]  B. Roos,et al.  Towards an accurate molecular orbital theory for excited states: the benzene molecule , 1992 .

[32]  Response theory calculations of the vibronically induced 1A1g−1B2u two-photon spectrum of benzene , 1993 .

[33]  F. Zerbetto,et al.  The S0(1Ag)–S1(1B2u) vibronic transition in benzene: An ab initio study , 1994 .

[34]  Stephen R. Langhoff,et al.  Quantum mechanical electronic structure calculations with chemical accuracy , 1995 .

[35]  B. Roos,et al.  A CASPT2 study of the valence and lowest Rydberg electronic states of benzene and phenol , 1995 .

[36]  Martin J. Packer,et al.  A new implementation of the second‐order polarization propagator approximation (SOPPA): The excitation spectra of benzene and naphthalene , 1996 .

[37]  P. Jørgensen,et al.  Large-scale calculations of excitation energies in coupled cluster theory: The singlet excited states of benzene , 1996 .

[38]  K. Kuczera,et al.  Ab initio calculations of S1 excited state vibrational spectra of benzene, naphthalene and anthracene , 1997 .

[39]  A. Mebel,et al.  Ab initio calculations of vibronic coupling. Applications to symmetry-forbidden vibronic spectra and internal conversion in ethylene , 1997 .

[40]  P. Taylor,et al.  The harmonic frequencies of benzene. A case for atomic natural orbital basis sets , 1997 .

[41]  John D. Watts,et al.  Coupled-cluster calculations of the excitation energies of benzene and the azabenzenes , 1997 .

[42]  J. Gauss,et al.  A coupled cluster study of the 1 1A1g and 1 1B2u states of benzene , 1998 .

[43]  Per-Åke Malmqvist,et al.  Franck-Condon factors for multidimensional harmonic oscillators , 1998 .

[44]  Roland Lindh,et al.  A direct implementation of the second-order derivatives of multiconfigurational SCF energies and an analysis of the preconditioning in the associated response equation , 1999 .