Sparsity-accuracy trade-off in MKL

We empirically investigate the best trade-off between sparse and uniformly-weighted multiple kernel learning (MKL) using the elastic-net regularization on real and simulated datasets. We find that the best trade-off parameter depends not only on the sparsity of the true kernel-weight spectrum but also on the linear dependence among kernels and the number of samples.

[1]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[2]  Nello Cristianini,et al.  Learning the Kernel Matrix with Semidefinite Programming , 2002, J. Mach. Learn. Res..

[3]  Michael I. Jordan,et al.  Multiple kernel learning, conic duality, and the SMO algorithm , 2004, ICML.

[4]  Pietro Perona,et al.  Learning Generative Visual Models from Few Training Examples: An Incremental Bayesian Approach Tested on 101 Object Categories , 2004, 2004 Conference on Computer Vision and Pattern Recognition Workshop.

[5]  Charles A. Micchelli,et al.  Learning the Kernel Function via Regularization , 2005, J. Mach. Learn. Res..

[6]  H. Zou,et al.  Regularization and variable selection via the elastic net , 2005 .

[7]  A. Atiya,et al.  Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond , 2005, IEEE Transactions on Neural Networks.

[8]  Cordelia Schmid,et al.  Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[9]  M. Yuan,et al.  Model selection and estimation in regression with grouped variables , 2006 .

[10]  Trevor Darrell,et al.  The Pyramid Match Kernel: Efficient Learning with Sets of Features , 2007, J. Mach. Learn. Res..

[11]  Francis R. Bach,et al.  Consistency of the group Lasso and multiple kernel learning , 2007, J. Mach. Learn. Res..

[12]  Mehryar Mohri,et al.  L2 Regularization for Learning Kernels , 2009, UAI.

[13]  Mark J. F. Gales,et al.  Combining Derivative and Parametric Kernels for Speaker Verification , 2009, IEEE Transactions on Audio, Speech, and Language Processing.

[14]  Sebastian Nowozin,et al.  Let the kernel figure it out; Principled learning of pre-processing for kernel classifiers , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[15]  Klaus-Robert Müller,et al.  Efficient and Accurate Lp-Norm Multiple Kernel Learning , 2009, NIPS.

[16]  Koen E. A. van de Sande,et al.  Evaluating Color Descriptors for Object and Scene Recognition , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.