Science performance of the Pupil-mapping Exoplanet Coronagraphic Observer (PECO)

The Pupil-mapping Exoplanet Coronagraphic Observer (PECO) medium-class mission concept is a 1.4-m space-based optical telescope with a high-performance Phase-Induced Amplitude Apodization (PIAA) coronagraph. PECO detects and characterizes exoplanets and their host systems at 2 λ/D (0.15") separation at high contrast (~1e-10). The optical design images in 16 filter bands from 400-800 nm, producing simultaneous low-resolution target spectra. PECO will characterize terrestrial planets in the habitable zones of ~20 nearby F, G, K stars at spectral resolution of R~15, as well as over a dozen radial-velocity planets and over a hundred gas giants and exozodiacal dust disks. We discuss PECO's expected science performance and simulated data products over its three-year mission lifetime.

[1]  O. Guyon Phase-induced amplitude apodization of telescope pupils for extrasolar terrestrial planet imaging , 2003, astro-ph/0301190.

[2]  M. Osorio,et al.  Earth’s transmission spectrum from lunar eclipse observations , 2009, Nature.

[3]  Michael R. Meyer,et al.  Evolution of Mid-Infrared Excess around Sun-like Stars: Constraints on Models of Terrestrial Planet Formation , 2007, 0712.1057.

[4]  Mark Clampin,et al.  Discovery of an 86 AU Radius Debris Ring around HD 181327 , 2006 .

[5]  S. Ridgway,et al.  Exoplanet Imaging with a Phase-induced Amplitude Apodization Coronagraph. I. Principle , 2004, astro-ph/0412179.

[6]  Howard Isaacson,et al.  Five Planets Orbiting 55 Cancri , 2007, 0712.3917.

[7]  David A. Golimowski,et al.  Hubble Space Telescope Advanced Camera for Surveys Coronagraphic Imaging of the AU Microscopii Debris Disk , 2005 .

[8]  E. Karkoschka Spectrophotometry of the Jovian Planets and Titan at 300- to 1000-nm Wavelength: The Methane Spectrum , 1994 .

[9]  S. Ridgway,et al.  Exoplanet Imaging with a Phase-induced Amplitude Apodization Coronograph. II. Performance , 2006 .

[10]  S. Ridgway,et al.  Theoretical Limits on Extrasolar Terrestrial Planet Detection with Coronagraphs , 2006, astro-ph/0608506.

[11]  M. Franx,et al.  Hubble Space Telescope ACS Coronagraphic Imaging of the Circumstellar Disk around HD 141569A , 2003 .

[12]  Francesco Paresce,et al.  Main-Sequence Stars with Circumstellar Solid Material - the VEGA Phenomenon , 1993 .

[13]  E. L. Wright,et al.  The COBE Diffuse Infrared Background Experiment Search for the Cosmic Infrared Background. II. Model of the Interplanetary Dust Cloud , 1997, astro-ph/9806250.

[14]  et al,et al.  Frequency of Debris Disks around Solar-Type Stars: First Results from a Spitzer MIPS Survey , 2005, astro-ph/0509199.

[15]  J. W. Chamberlain,et al.  Light Scattering in Planetary Atmospheres , 1976 .

[16]  R. Angel,et al.  CORONAGRAPHIC LOW-ORDER WAVE-FRONT SENSOR: PRINCIPLE AND APPLICATION TO A PHASE-INDUCED AMPLITUDE CORONAGRAPH , 2009, 0911.1301.

[17]  J. Green,et al.  Reflectivity and optical surface height requirements in a broadband coronagraph. 1. Contrast floor due to controllable spatial frequencies. , 2006, Applied optics.

[18]  Stuart B. Shaklan,et al.  The Terrestrial Planet Finder Coronagraph dynamics error budget , 2005, SPIE Optics + Photonics.

[19]  Mark Clampin,et al.  A planetary system as the origin of structure in Fomalhaut's dust belt , 2005, Nature.

[20]  Marc J. Kuchner,et al.  The Geometry of Resonant Signatures in Debris Disks with Planets , 2002, astro-ph/0209261.

[21]  N. J. Woolf,et al.  The Spectrum of Earthshine: A Pale Blue Dot Observed from the Ground , 2002 .

[22]  S. Ridgway,et al.  Exoplanet Imaging with a Phase-induced Amplitude Apodization Coronagraph. III. Diffraction Effects and Coronagraph Design , 2006 .

[23]  Marcia J. Rieke,et al.  Hunting planets and observing disks with the JWST NIRCam coronagraph , 2007, SPIE Optical Engineering + Applications.

[24]  C. McKay,et al.  The thermal structure of Titan's atmosphere. , 1989, Icarus.

[25]  Mark Clampin,et al.  Optical Images of an Exosolar Planet 25 Light-Years from Earth , 2008, Science.

[26]  Andrew Szentgyorgyi,et al.  A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1 , 2008, Nature.

[27]  W. A. Traub,et al.  Pupil Mapping in Two Dimensions for High-Contrast Imaging , 2004, astro-ph/0412045.

[28]  Robert A. Brown Single-Visit Photometric and Obscurational Completeness , 2005, astro-ph/0503077.