Wireless passive sensor development for harsh environment applications

Three researchers at University of Central Florida from electrical engineering, materials science, and mechanical engineering teamed together to develop high-temperature (>; 1000°C) sensors for various harsh environment applications such as combustion turbines. In this paper, we will provide an overview of the recent progress in the development of sensing materials, sensor fabrication methods, and wireless sensing techniques.

[1]  Xun Gong,et al.  Characterization of high-temperature ceramic materials at microwave frequencies for MEMS applications , 2009, 2009 IEEE 10th Annual Wireless and Microwave Technology Conference.

[2]  Yiguang Wang,et al.  Polymer-derived SiAlCN ceramics resist oxidation at 1400 °C , 2006 .

[3]  Xun Gong,et al.  Wirelessly sensing resonant frequency of passive resonators with different Q factors , 2011, 2011 IEEE International Symposium on Antennas and Propagation (APSURSI).

[4]  R. Brook,et al.  Synthesis of dense silicon-based ceramics at low temperatures , 1992, Nature.

[5]  B. W. Noel,et al.  Remote temperature-measurement instrumentation for a heated rotating turbine disk , 1988 .

[6]  R. Riedel,et al.  Silazane derived ceramics and related materials , 2000 .

[7]  Jiangang Du,et al.  High-temperature single-crystal 3C-SiC capacitive pressure sensor , 2004, IEEE Sensors Journal.

[8]  Anthony D. Kurtz,et al.  Operation of α(6H)-SiC pressure sensor at 500 °C , 1998 .

[9]  Ernst Obermeier,et al.  High Temperature 10 Bar Pressure Sensor Based on 3C-SiC/SOI for Turbine Control Applications , 2001 .

[10]  S. Ebadi,et al.  Wireless resonant frequency detection of SiCN ceramic resonator for sensor applications , 2011, 2011 IEEE International Symposium on Antennas and Propagation (APSURSI).

[11]  X. Gong,et al.  A wireless sensing technique using passive microwave resonators , 2008, 2008 IEEE Antennas and Propagation Society International Symposium.

[12]  J. Kapat,et al.  Silicoaluminum Carbonitride with Anomalously High Resistance to Oxidation and Hot Corrosion , 2004 .

[13]  Yiguang Wang Polymer-derived Si-al-c-n Ceramics:oxidation, Hot-corrosion, And Structural Evolution , 2006 .

[14]  Xun Gong,et al.  A Low-Profile Wireless Passive Temperature Sensor Using Resonator/Antenna Integration Up to 1000 $^{\circ}$C , 2012, IEEE Antennas and Wireless Propagation Letters.

[15]  Tomoki Taniguchi,et al.  Temperature Measurement of High Speed Rotating Turbine Blades Using a Pyrometer , 2006 .

[16]  Xun Gong,et al.  High-temperature characterization of SiCN ceramics for wireless passive sensing applications up to 500°C , 2011, WAMICON 2011 Conference Proceedings.

[17]  M. Krishna,et al.  Characterization of Yb2O3 based optical temperature sensor for high temperature applications , 2007 .

[18]  John L. Gland,et al.  Survivability of a silicon-based microelectronic gas-detector structure for high-temperature flow applications , 1996 .

[19]  Mechanical and Thermophysical Properties of Silicon Nitride Thin Films at High Temperatures Using In-Situ Mems Temperature Sensors , 1998 .

[20]  Y Kasahara,et al.  Highly reliable temperature sensor using rf-sputtered SiC thin film. , 1979, The Review of scientific instruments.

[21]  Xun Gong,et al.  Characterization of SiCN Ceramic Material Dielectric Properties at High Temperatures for Harsh Environment Sensing Applications , 2013, IEEE Transactions on Microwave Theory and Techniques.

[22]  Yiguang Wang,et al.  Silicoaluminum carbonitride ceramic resist to oxidation/corrosion in water vapor , 2006 .

[23]  George W. Tregay,et al.  Optical fiber sensor for temperature measurement from 600 to 1900 C in gas turbine engines , 1991, Other Conferences.

[24]  Yiguang Wang,et al.  Oxidation of Polymer‐Derived SiAlCN Ceramics , 2005 .

[25]  Robert S. Okojie,et al.  Operation of /spl alpha/(6H)-SiC pressure sensor at 500/spl deg/C , 1997, Proceedings of International Solid State Sensors and Actuators Conference (Transducers '97).

[26]  R. Raj,et al.  Amorphous Silicoboron Carbonitride Ceramic with Very High Viscosity at Temperatures above 1500°C , 1998 .

[27]  Xun Gong,et al.  A compact wireless passive sensing mechanism based on a seamlessly integrated resonator/antenna , 2011, 2011 IEEE International Symposium on Antennas and Propagation (APSURSI).

[28]  F. Aldinger,et al.  A silicoboron carbonitride ceramic stable to 2,000°C , 1996, Nature.

[29]  H. Kleebe,et al.  Newtonian Viscosity of Amorphous Silicon Carbonitride at High Temperature , 2005 .