Bayesian Classification With Gaussian Processes
暂无分享,去创建一个
[1] G. Wahba,et al. A Correspondence Between Bayesian Estimation on Stochastic Processes and Smoothing by Splines , 1970 .
[2] B. Silverman,et al. Density Ratios, Empirical Likelihood and Cot Death , 1978 .
[3] K. Mardia,et al. Maximum likelihood estimation of models for residual covariance in spatial regression , 1984 .
[4] G. Wahba. A Comparison of GCV and GML for Choosing the Smoothing Parameter in the Generalized Spline Smoothing Problem , 1985 .
[5] S. Yakowitz,et al. A comparison of kriging with nonparametric regression methods , 1985 .
[6] B. Yandell,et al. Automatic Smoothing of Regression Functions in Generalized Linear Models , 1986 .
[7] S. Duane,et al. Hybrid Monte Carlo , 1987 .
[8] P. Diaconis. Bayesian Numerical Analysis , 1988 .
[9] G. Wahba. Spline models for observational data , 1990 .
[10] Martin Fodslette Møller,et al. A scaled conjugate gradient algorithm for fast supervised learning , 1993, Neural Networks.
[11] J. Skilling. Physics and Probability: Bayesian Numerical Analysis , 1993 .
[12] G. Wahba,et al. Soft Classiication, A. K. A. Risk Estimation, via Penalized Log Likelihood and Smoothing Spline Analysis of Variance , 1993 .
[13] Mike Rees,et al. 5. Statistics for Spatial Data , 1993 .
[14] Chong Gu,et al. Soft Classification, a. k. a. Risk Estimation, via Penalized Log Likelihood and Smoothing Spline Ana , 1993 .
[15] Brian D. Ripley,et al. Statistical aspects of neural networks , 1993 .
[16] B. Silverman,et al. Nonparametric regression and generalized linear models , 1994 .
[17] Brian D. Ripley,et al. Flexible Non-linear Approaches to Classification , 1994 .
[18] Bradley P. Carlin,et al. Markov Chain Monte Carlo conver-gence diagnostics: a comparative review , 1996 .
[19] Carl E. Rasmussen,et al. In Advances in Neural Information Processing Systems , 2011 .
[20] Yoshua Bengio,et al. Pattern Recognition and Neural Networks , 1995 .
[21] Geoffrey E. Hinton,et al. Bayesian Learning for Neural Networks , 1995 .
[22] Christopher K. I. Williams. Computing with Infinite Networks , 1996, NIPS.
[23] David J. C. MacKay,et al. Bayesian Methods for Backpropagation Networks , 1996 .
[24] David Barber,et al. Gaussian Processes for Bayesian Classification via Hybrid Monte Carlo , 1996, NIPS.
[25] Geoffrey E. Hinton,et al. Evaluation of Gaussian processes and other methods for non-linear regression , 1997 .
[26] M. Gibbs,et al. Efficient implementation of gaussian processes , 1997 .
[27] Radford M. Neal. Monte Carlo Implementation of Gaussian Process Models for Bayesian Regression and Classification , 1997, physics/9701026.
[28] Christopher K. I. Williams. Computation with Infinite Neural Networks , 1998, Neural Computation.
[29] David J. C. MacKay,et al. Variational Gaussian process classifiers , 2000, IEEE Trans. Neural Networks Learn. Syst..
[30] Vladimir N. Vapnik,et al. The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.
[31] Klaus Ritter,et al. Bayesian numerical analysis , 2000 .