THE CARNEGIE SUPERNOVA PROJECT: ANALYSIS OF THE FIRST SAMPLE OF LOW-REDSHIFT TYPE-Ia SUPERNOVAE

An analysis of the first set of low-redshift (z < 0.08) Type Ia supernovae (SNe Ia) monitored by the Carnegie Supernova Project between 2004 and 2006 is presented. The data consist of well-sampled, high-precision optical (ugriBV) and near-infrared (NIR; YJHKs ) light curves in a well-understood photometric system. Methods are described for deriving light-curve parameters, and for building template light curves which are used to fit SN Ia data in the ugriBVYJH bands. The intrinsic colors at maximum light are calibrated using a subsample of supernovae (SNe) assumed to have suffered little or no reddening, enabling color excesses to be estimated for the full sample. The optical-NIR color excesses allow the properties of the reddening law in the host galaxies to be studied. A low average value of the total-to-selective absorption coefficient, RV 1.7, is derived when using the entire sample of SNe. However, when the two highly reddened SNe (SN 2005A and SN 2006X) in the sample are excluded, a value RV 3.2 is obtained, similar to the standard value for the Galaxy. The red colors of these two events are well matched by a model where multiple scattering of photons by circumstellar dust steepens the effective extinction law. The absolute peak magnitudes of the SNe are studied in all bands using a two-parameter linear fit to the decline rates and the colors at maximum light, or alternatively, the color excesses. In both cases, similar results are obtained with dispersions in absolute magnitudes of 0.12-0.16?mag, depending on the specific filter-color combination. In contrast to the results obtained from the comparison of the color excesses, these fits of absolute magnitude give RV 1-2 when the dispersion is minimized, even when the two highly reddened SNe are excluded. This discrepancy suggests that, beyond the normal interstellar reddening produced in the host galaxies, there is an intrinsic dispersion in the colors of SNe Ia which is correlated with luminosity but independent of the decline rate. Finally, a Hubble diagram for the best-observed subsample of SNe is produced by combining the results of the fits of absolute magnitude versus decline rate and color excess for each filter. The resulting scatter of 0.12 mag appears to be limited by the peculiar velocities of the host galaxies as evidenced by the strong correlation between the distance-modulus residuals observed in the individual filters. The implication is that the actual precision of SNe Ia distances is 3%-4%.

[1]  A. Pastorello,et al.  Anomalous extinction behaviour towards the Type Ia SN 2003cg , 2006, astro-ph/0603316.

[2]  J. Wheeler,et al.  Delayed detonation models for normal and subluminous type Ia sueprnovae: Absolute brightness, light curves, and molecule formation , 1995 .

[3]  A. Goobar,et al.  The colour-lightcurve shape relation of type Ia supernovae and the reddening law , 2007, 0712.1155.

[4]  J. E. O'Donnell R(sub nu)-dependent optical and near-ultraviolet extinction , 1994 .

[5]  P. E. Nugent,et al.  K-corrections and spectral templates of Type Ia supernovae , 2007 .

[6]  Pasadena,et al.  Reddening, Absorption, and Decline Rate Corrections for a Complete Sample of Type Ia Supernovae Leading to a Fully Corrected Hubble Diagram to v < 30,000 km s–1 , 2005, astro-ph/0501664.

[7]  D. J. Fixsen,et al.  The Cosmic Microwave Background spectrum from the full COBE FIRAS data set , 1996 .

[8]  A. Kembhavi,et al.  Properties of dust in early-type galaxies , 2006 .

[9]  A. Pastorello,et al.  Cepheid calibration of Type Ia supernovae and the Hubble constant , 2004 .

[10]  S. Jha,et al.  The Luminosity of SN 1999by in NGC 2841 and the Nature of “Peculiar” Type Ia Supernovae , 2001, astro-ph/0105490.

[11]  David Branch,et al.  Type Ia Supernovae as Standard Candles , 1993 .

[12]  R. Nichol,et al.  Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies , 2005, astro-ph/0501171.

[13]  M. Kowalski,et al.  Nonlinear Decline-Rate Dependence and Intrinsic Variation of Type Ia Supernova Luminosities , 2005, astro-ph/0512370.

[14]  Armin Rest,et al.  Photometry of the Type Ia Supernovae 1999cc, 1999cl, and 2000cf , 2005, astro-ph/0511162.

[15]  M. Phillips,et al.  The Absolute Magnitudes of Type IA Supernovae , 1993 .

[16]  A New Method to Calibrate the Magnitudes of Type Ia Supernovae at Maximum Light , 2006, astro-ph/0603407.

[17]  Gerard A. Luppino,et al.  The SBF Survey of Galaxy Distances. IV. SBF Magnitudes, Colors, and Distances , 2000, astro-ph/0011223.

[18]  T. Matheson,et al.  A SECOND CASE OF VARIABLE Na i D LINES IN A HIGHLY REDDENED TYPE Ia SUPERNOVA , 2008, 0811.0002.

[19]  Scheduled discoveries of 7+ high-Redshift supernovae: First cosmology results and bounds on q{sub 0} , 1996, astro-ph/9602122.

[20]  J. P. Huchra,et al.  Final Results from the Hubble Space Telescope Key Project to Measure the Hubble Constant , 1998, astro-ph/9801080.

[21]  Paul Dierckx,et al.  Curve and surface fitting with splines , 1994, Monographs on numerical analysis.

[22]  S. E. Persson,et al.  New Cepheid Period-Luminosity Relations for the Large Magellanic Cloud: 92 Near-Infrared Light Curves , 2004 .

[23]  D. Branch,et al.  Determination of the Hubble Constant Using a Two-Parameter Luminosity Correction for Type Ia Supernovae , 1999, astro-ph/9904347.

[24]  Ralf Bender,et al.  THE SLOPE OF THE BLACK HOLE MASS VERSUS VELOCITY DISPERSION CORRELATION , 2002, astro-ph/0203468.

[25]  R. C. Smith,et al.  The morphology of type ia supernovae light curves , 1996 .

[26]  J. Wheeler,et al.  Hubble's constant and exploding carbon–oxygen white dwarf models for Type I supernovae , 1985, Nature.

[27]  M. Phillips,et al.  Evidence for a Spectroscopic Sequence among Type Ia Supernovae , 1995, astro-ph/9510004.

[28]  Marcia J. Rieke,et al.  Measuring Distances and Probing the Unresolved Stellar Populations of Galaxies Using Infrared Surface Brightness Fluctuations , 2003 .

[29]  P. Chandra,et al.  Detection of Circumstellar Material in a Normal Type Ia Supernova , 2007, Science.

[30]  D. Kasen Secondary Maximum in the Near-Infrared Light Curves of Type Ia Supernovae , 2006, astro-ph/0606449.

[31]  M. Dolci,et al.  SN 2002cv: a heavily obscured Type Ia supernova , 2007, 0710.4503.

[32]  Adam G. Riess,et al.  Improved Distances to Type Ia Supernovae with Multicolor Light-Curve Shapes: MLCS2k2 , 2006 .

[33]  S. E. Persson,et al.  Optical and Infrared Photometry of the Type Ia Supernovae 1999da, 1999dk, 1999gp, 2000bk, and 2000ce , 2001, astro-ph/0106088.

[34]  Arlo U. Landolt,et al.  UBVRI Photometric Standard Stars in the Magnitude Range 11 , 1992 .

[35]  Supernovae and the nature of the dark energy , 2001, astro-ph/0104009.

[36]  R. Ellis,et al.  Measurements of $\Omega$ and $\Lambda$ from 42 high redshift supernovae , 1998, astro-ph/9812133.

[37]  Wendy L. Freedman,et al.  The Carnegie Supernova Project: The Low‐Redshift Survey , 2005, astro-ph/0512039.

[38]  Lifan Wang,et al.  The Detection of a Light Echo from the Type Ia Supernova 2006X in M100 , 2007, 0711.2570.

[39]  Kevin Krisciunas,et al.  Hubble Diagrams of Type Ia Supernovae in the Near-Infrared , 2003, astro-ph/0312626.

[40]  M. Phillips,et al.  Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.

[41]  Kevin Krisciunas,et al.  The Type Ia supernova 2004S, a clone of SN 2001el, and the optimal photometric bands for extinction estimation , 2007 .

[42]  S. E. Persson,et al.  Optical and Infrared Photometry of the Nearby Type Ia Supernovae 1999ee, 2000bh, 2000ca, and 2001ba , 2003, astro-ph/0311439.

[43]  A. C. Fabian,et al.  Constraints on dark energy from Chandra observations of the largest relaxed galaxy clusters , 2004 .

[44]  Ariel Goobar,et al.  Low RV from Circumstellar Dust around Supernovae , 2008, 0809.1094.

[45]  R. Foley,et al.  IMPROVED DISTANCES TO TYPE Ia SUPERNOVAE WITH TWO SPECTROSCOPIC SUBCLASSES , 2009, 0906.1616.

[46]  M. Phillips,et al.  The reddening-free decline rate versus luminosity relationship for type ia supernovae , 1999, astro-ph/9907052.

[47]  Lifan Wang Dust around Type Ia Supernovae , 2005 .

[48]  Armin Rest,et al.  Type Ia Supernovae Are Good Standard Candles in the Near Infrared: Evidence from PAIRITEL , 2007, 0711.2068.

[49]  Stefano Casertano,et al.  New Hubble Space Telescope Discoveries of Type Ia Supernovae at z ≥ 1: Narrowing Constraints on the Early Behavior of Dark Energy , 2006, astro-ph/0611572.

[50]  DETERMINATION OF THE HUBBLE CONSTANT, THE INTRINSIC SCATTER OF LUMINOSITIES OF TYPE Ia SUPERNOVAE, AND EVIDENCE FOR NONSTANDARD DUST IN OTHER GALAXIES , 2006, astro-ph/0603392.

[51]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[52]  N. B. Suntzeff,et al.  Observational Constraints on the Nature of Dark Energy: First Cosmological Results from the ESSENCE Supernova Survey , 2007, astro-ph/0701041.

[53]  S. E. Persson,et al.  Optical and Infrared Photometry of the Type Ia Supernovae 1991T, 1991bg, 1999ek, 2001bt, 2001cn, 2001cz, and 2002bo , 2004, astro-ph/0409036.

[54]  M. Capaccioli,et al.  Surface Brightness Fluctuations from Archival ACS Images: A Stellar Population and Distance Study , 2007, 0706.4467.

[55]  D. Massa,et al.  An Analysis of the Shapes of Interstellar Extinction Curves. V. The IR-through-UV Curve Morphology , 2007, 0705.0154.

[56]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[57]  M. Phillips,et al.  The Absolute Luminosities of the Calan/Tololo Type Ia Supernovae , 1996, astro-ph/9609059.

[58]  W. M. Wood-Vasey,et al.  Improved Cosmological Constraints from New, Old, and Combined Supernova Data Sets , 2008, 0804.4142.

[59]  Adam G. Riess,et al.  Accepted for publication in The Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 03/07/07 , 2022 .

[60]  The Physics of Type Ia Supernova Light Curves. II. Opacity and Diffusion , 1996, astro-ph/9611195.

[61]  J. Prieto,et al.  The Luminous and Carbon-rich Supernova 2006gz: A Double Degenerate Merger? , 2007, 0709.1501.

[62]  IoA,et al.  Improved constraints on dark energy from Chandra X-ray observations of the largest relaxed galaxy clusters , 2007, 0706.0033.

[63]  Interstellar matter in elliptical galaxies. III. Properties of dust extinction , 1994 .

[64]  et al,et al.  UBVRI Light Curves of 44 Type Ia Supernovae , 2005 .

[65]  W. Press,et al.  Is the Dust Obscuring Supernovae in Distant Galaxies the Same as Dust in the Milky Way? , 1996 .

[66]  P. Astier,et al.  SALT : a spectral adaptive light curve template for type Ia supernovae , 2005 .

[67]  A. Goobar,et al.  Extinction properties of lensing galaxies , 2007, 0711.4267.

[68]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[69]  Kevin Krisciunas,et al.  Optical and Near-Infrared Observations of the Highly Reddened, Rapidly Expanding Type Ia Supernova SN 2006X in M100 , 2007, 0708.0140.

[70]  W. Arnett Type I supernovae. I. Analytic solutions for the early part of the light curve , 1982 .