Design, Synthesis and Test of Reversible Circuits for Emerging Nanotechnologies

Reversible circuits can generate unique output vector from each input vector, and vice-versa, that is, there is a one-to-one mapping between the input and the output vectors. The contributions of the dissertation include a novel reversible gate particularly suitable for reversible arithmetic, several designs for reversible arithmetic such as binary and BCD adders, sub tractors and comparators, a set of reversible sequential circuits such as latches, flip-flops, and shift registers. Unlike previous works, the above designs are optimized for multiple parameters such as ancilla and garbage bits, quantum cost and delay. Another important contribution is the application of conservative reversible logic towards online and offline testing of single as well as multiple faults in reversible as well as traditional logic VLSI circuits.

[1]  Mozammel H. A. Khan,et al.  Quantum ternary parallel adder/subtractor with partially-look-ahead carry , 2007, J. Syst. Archit..

[2]  A. Orailoglu,et al.  Fault tolerant quantum cellular array (QCA) design using triple modular redundancy with shifted operands , 2005, Proceedings of the ASP-DAC 2005. Asia and South Pacific Design Automation Conference, 2005..

[3]  C. Lent,et al.  Molecular quantum-dot cellular automata , 2003 .

[4]  Jing Huang,et al.  Analysis of missing and additional cell defects in sequential quantum-dot cellular automata , 2007, Integr..

[5]  Rodney Van Meter,et al.  Arithmetic on a distributed-memory quantum multicomputer , 2006, JETC.

[6]  Paul R Prucnal,et al.  Experimental demonstration of an all-optical fiber-based Fredkin gate. , 2009, Optics letters.

[7]  Milburn,et al.  Quantum optical Fredkin gate. , 1989, Physical review letters.

[8]  N. Ranganathan,et al.  Reversible Logic-Based Concurrently Testable Latches for Molecular QCA , 2010, IEEE Transactions on Nanotechnology.

[9]  John P. Hayes,et al.  Synthesis of reversible logic circuits , 2003, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[10]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[11]  Chien-Cheng Tseng,et al.  Quantum full adder and subtractor , 2002 .

[12]  N. Ranganathan,et al.  Tutorial T2: Reversible Logic: Fundamentals and Applications in Ultra-Low Power, Fault Testing and Emerging Nanotechnologies, and Challenges in Future , 2012, 2012 25th International Conference on VLSI Design.

[13]  Jing Huang,et al.  Defect characterization and tolerance of QCA sequential devices and circuits , 2005, 20th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems (DFT'05).

[14]  Robert Wille,et al.  Synthesis of Reversible Functions Beyond Gate Count and Quantum Cost , 2010, 1004.4609.

[15]  S. Bhanja,et al.  Estimation of Upper Bound of Power Dissipation in QCA Circuits , 2009, IEEE Transactions on Nanotechnology.

[16]  N. Ranganathan,et al.  Design of Efficient Reversible Binary Subtractors Based on a New Reversible Gate , 2009, 2009 IEEE Computer Society Annual Symposium on VLSI.

[17]  Niraj K. Jha,et al.  Reversible logic synthesis with Fredkin and Peres gates , 2008, JETC.

[18]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[19]  Parag K. Lala,et al.  Reversible-logic design with online testability , 2006, IEEE Transactions on Instrumentation and Measurement.

[20]  Charles H. Bennett,et al.  Logical reversibility of computation , 1973 .

[21]  I. Sengupta,et al.  A DFT methodology for detecting bridging faults in reversible logic circuits , 2007, TENCON 2007 - 2007 IEEE Region 10 Conference.

[22]  Jon C. Muzio,et al.  Analyzing Fault Models for Reversible Logic Circuits , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[23]  D. M. Miller,et al.  Comparison of the Cost Metrics for Reversible and Quantum Logic Synthesis , 2005, quant-ph/0511008.

[24]  Keivan Navi,et al.  MINIMIZATION AND OPTIMIZATION OF REVERSIBLE BCD-FULL ADDER/SUBTRACTOR USING GENETIC ALGORITHM AND DON'T CARE CONCEPT , 2009 .

[25]  Morteza Saheb Zamani,et al.  Reversible circuit synthesis using a cycle-based approach , 2010, JETC.

[26]  Tanay Chattopadhyay,et al.  Mach–Zehnder interferometer-based all-optical reversible logic gate , 2010 .

[27]  Fabrizio Lombardi,et al.  HDLQ: A HDL environment for QCA design , 2006, JETC.

[28]  Niraj K. Jha,et al.  An Algorithm for Synthesis of Reversible Logic Circuits , 2006, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[29]  Jie Ren,et al.  Progress With Physically and Logically Reversible Superconducting Digital Circuits , 2011, IEEE Transactions on Applied Superconductivity.

[30]  G.A. Jullien,et al.  A method of majority logic reduction for quantum cellular automata , 2004, IEEE Transactions on Nanotechnology.

[31]  Michael P. Frank,et al.  Introduction to reversible computing: motivation, progress, and challenges , 2005, CF '05.

[32]  V. Kamakoti,et al.  Efficient Building Blocks for Reversible Sequential Circuit Design , 2006, 2006 49th IEEE International Midwest Symposium on Circuits and Systems.

[33]  Robert Wille,et al.  Exact Multiple-Control Toffoli Network Synthesis With SAT Techniques , 2009, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[34]  Gerhard W. Dueck,et al.  Reversible cascades with minimal garbage , 2004, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[35]  Ramesh Karri,et al.  Quantum-Dot Cellular Automata Design Guideline , 2006, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[36]  R. Landauer,et al.  Irreversibility and heat generation in the computing process , 1961, IBM J. Res. Dev..

[37]  Anirban Pathak,et al.  On the Synthesis of Sequential Reversible Circuit , 2007, 0707.4233.

[38]  Robert Glück,et al.  Optimized reversible binary-coded decimal adders , 2008, J. Syst. Archit..

[39]  Jonathan Rose,et al.  The effect of LUT and cluster size on deep-submicron FPGA performance and density , 2004 .

[40]  Gary H. Bernstein,et al.  Operation of a quantum-dot cellular automata (QCA) shift register and analysis of errors , 2003 .

[41]  P. D. Tougaw,et al.  A device architecture for computing with quantum dots , 1997, Proc. IEEE.

[42]  Jacqueline E. Rice,et al.  A new look at reversible memory elements , 2006, 2006 IEEE International Symposium on Circuits and Systems.

[43]  Guowu Yang,et al.  Optimal synthesis of multiple output Boolean functions using a set of quantum gates by symbolic reachability analysis , 2006, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[44]  Robert Wille,et al.  Exact Synthesis of Elementary Quantum Gate Circuits for Reversible Functions with Don't Cares , 2008, 38th International Symposium on Multiple Valued Logic (ismvl 2008).

[45]  Yasuhiro Takahashi,et al.  Quantum Arithmetic Circuits: A Survey , 2009, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[46]  Jair C. C. Freitas,et al.  NMR Quantum Information Processing , 2007 .

[47]  Himanshu Thapliyal,et al.  A new design of the reversible subtractor circuit , 2011, 2011 11th IEEE International Conference on Nanotechnology.

[48]  Barenco,et al.  Quantum networks for elementary arithmetic operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[49]  Mark Zwolinski,et al.  Reversible Logic to Cryptographic Hardware: A New Paradigm , 2006, 2006 49th IEEE International Midwest Symposium on Circuits and Systems.

[50]  N. Ranganathan,et al.  Conservative QCA Gate (CQCA) for Designing Concurrently Testable Molecular QCA Circuits , 2009, 2009 22nd International Conference on VLSI Design.

[51]  H. Thapliyal,et al.  Design of a comparator tree based on reversible logic , 2010, 10th IEEE International Conference on Nanotechnology.

[52]  Edward J. McCluskey,et al.  Diversity techniques for concurrent error detection , 2001, Proceedings of the IEEE 2001. 2nd International Symposium on Quality Electronic Design.

[53]  N. Ranganathan,et al.  Design of Reversible Latches Optimized for Quantum Cost, Delay and Garbage Outputs , 2010, 2010 23rd International Conference on VLSI Design.

[54]  Robert H. Dennard,et al.  Practical Strategies for Power-Efficient Computing Technologies , 2010, Proceedings of the IEEE.

[55]  Himanshu Thapliyal,et al.  Design of a reversible single precision floating point multiplier based on operand decomposition , 2010, 10th IEEE International Conference on Nanotechnology.

[56]  Supriyo Bandyopadhyay,et al.  Introduction to spintronics , 2008 .

[57]  Katarzyna Radecka,et al.  Testing QCA Modular Logic , 2006, 2006 13th IEEE International Conference on Electronics, Circuits and Systems.

[58]  John P. Hayes,et al.  Data structures and algorithms for simplifying reversible circuits , 2006, JETC.

[59]  V. Semenov,et al.  Classical and Quantum Operation Modes of the Reversible Josephson-Junction Logic Circuits , 2007, IEEE Transactions on Applied Superconductivity.

[60]  H. Thapliyal,et al.  Testable Reversible Latches for Molecular QCA , 2008, 2008 8th IEEE Conference on Nanotechnology.

[61]  K. Poulose Jacob,et al.  Reversible Binary Coded Decimal Adders using Toffoli Gates , 2009 .

[62]  N. Ranganathan,et al.  Reversible logic based concurrent error detection methodology for emerging nanocircuits , 2010, 10th IEEE International Conference on Nanotechnology.

[63]  Jacqueline E. Rice,et al.  An Introduction to Reversible Latches , 2008, Comput. J..

[64]  Thomas G. Draper,et al.  A new quantum ripple-carry addition circuit , 2004, quant-ph/0410184.

[65]  Massoud Pedram,et al.  A new design of double edge triggered flip-flops , 1998, Proceedings of 1998 Asia and South Pacific Design Automation Conference.

[66]  Zengxiao Jin,et al.  Fabrication and Measurement of Molecular Quantum Cellular Automata (QCA) Device , 2006 .

[67]  H. Thapliyal,et al.  A beginning in the reversible logic synthesis of sequential circuits , 2005 .

[68]  T. Toffoli,et al.  Conservative logic , 2002, Collision-Based Computing.

[69]  Barry W. Johnson,et al.  Concurrent testing of VLSI circuits using conservative logic , 1990, Proceedings., 1990 IEEE International Conference on Computer Design: VLSI in Computers and Processors.

[70]  Niraj K. Jha,et al.  A Test Generation Framework for Quantum Cellular Automata Circuits , 2007, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[71]  K. V. Ramanathan,et al.  Quantum-information processing by nuclear magnetic resonance: Experimental implementation of half-adder and subtractor operations using an oriented spin-7/2 system , 2002 .

[72]  Jing Huang,et al.  Reversible Gates and Testability of One Dimensional Arrays of Molecular QCA , 2008, J. Electron. Test..

[73]  P. D. Tougaw,et al.  Logical devices implemented using quantum cellular automata , 1994 .

[74]  Ahsan Raja Chowdhury,et al.  Design of a compact reversible binary coded decimal adder circuit , 2006, J. Syst. Archit..

[75]  Tommaso Toffoli,et al.  Reversible Computing , 1980, ICALP.

[76]  Maziar Goudarzi,et al.  A Reversible MIPS multi-cycle control FSM design , 2009, 2009 1st Asia Symposium on Quality Electronic Design.

[77]  Soo-Ik Chae,et al.  Implementation of a simple 8-bit microprocessor with reversible energy recovery logic , 2005, CF '05.

[78]  Yasuhiro Takahashi,et al.  Quantum addition circuits and unbounded fan-out , 2009, Quantum Inf. Comput..

[79]  Wolfgang Henseler,et al.  Digital Design , 2003 .

[80]  Chun-Yao Wang,et al.  Synthesis of Reversible Sequential Elements , 2007, 2007 Asia and South Pacific Design Automation Conference.

[81]  N. Ranganathan,et al.  Design of reversible sequential circuits optimizing quantum cost, delay, and garbage outputs , 2010, JETC.

[82]  Agung Trisetyarso,et al.  Circuit Design for A Measurement-Based Quantum Carry-Lookahead Adder , 2009, ArXiv.

[83]  Dmitri Maslov,et al.  Reversible Circuit Optimization Via Leaving the Boolean Domain , 2011, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[84]  Shin Min Kang,et al.  CMOS Digital Integrated Cir-cuits: Analysis and Design , 2002 .

[85]  F. Lombardi,et al.  Testing of quantum cellular automata , 2004, IEEE Transactions on Nanotechnology.

[86]  Mehdi Baradaran Tahoori,et al.  Online fault testing of reversible logic using dual rail coding , 2010, 2010 IEEE 16th International On-Line Testing Symposium.

[87]  Marco Ottavi,et al.  On the design of reversible QDCA systems. , 2006 .

[88]  Michael T. Niemier,et al.  Molecular QCA design with chemically reasonable constraints , 2008, JETC.

[89]  Craig S. Lent,et al.  Molecular quantum-dot cellular automata: From molecular structure to circuit dynamics , 2007 .

[90]  Michael P. Frank,et al.  Approaching the physical limits of computing , 2005, 35th International Symposium on Multiple-Valued Logic (ISMVL'05).

[91]  Himanshu Thapliyal,et al.  An extension to DNA based Fredkin gate circuits: design of reversible sequential circuits using Fredkin gates , 2005, International Symposium on Optomechatronic Technologies.

[92]  Guowu Yang,et al.  Bi-Directional Synthesis of 4-Bit Reversible Circuits , 2008, Comput. J..

[93]  N. Ranganathan,et al.  A new reversible design of BCD adder , 2011, 2011 Design, Automation & Test in Europe.

[94]  Kenichi Morita,et al.  Reversible computing and cellular automata - A survey , 2008, Theor. Comput. Sci..

[95]  Hafizur Rahaman,et al.  On the Detection of Missing-Gate Faults in Reversible Circuits by a Universal Test Set , 2008, 21st International Conference on VLSI Design (VLSID 2008).

[96]  M. B. Srinivas,et al.  The need of DNA computing: reversible designs of adders and multipliers using Fredkin gate , 2005, International Symposium on Optomechatronic Technologies.

[97]  Soo-Ik Chae,et al.  nMOS reversible energy recovery logic for ultra-low-energy applications , 2000, IEEE Journal of Solid-State Circuits.

[98]  Robert Wille,et al.  Reducing the number of lines in reversible circuits , 2010, Design Automation Conference.

[99]  Jaw-Shen Tsai,et al.  Progress Towards Reversible Computing With nSQUID Arrays , 2009, IEEE Transactions on Applied Superconductivity.

[100]  Pérès,et al.  Reversible logic and quantum computers. , 1985, Physical review. A, General physics.

[101]  N. Ranganathan,et al.  Design of Testable Reversible Sequential Circuits , 2013, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[102]  Yasuhiro Takahashi,et al.  A linear-size quantum circuit for addition with no ancillary qubits , 2005, Quantum Inf. Comput..

[103]  Majid Haghparast,et al.  Design and Optimization of Reversible BCD Adder/Subtractor Circuit for Quantum and Nanotechnology Based Systems , 2008 .

[104]  Priyadarsan Patra Asymptotically Zero Power in Reversible Sequential Machines , 1995 .

[105]  Peter M. Kogge,et al.  System Reliabilities When Using Triple Modular Redundancy in Quantum-Dot Cellular Automata , 2008, 2008 IEEE International Symposium on Defect and Fault Tolerance of VLSI Systems.

[106]  P. D. Tougaw,et al.  Dynamic behavior of quantum cellular automata , 1996 .

[107]  N. Ranganathan,et al.  Design of efficient reversible logic-based binary and BCD adder circuits , 2013, JETC.

[108]  Gerhard W. Dueck,et al.  Quantum Circuit Simplification and Level Compaction , 2006, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[109]  Ashis Kumer Biswas,et al.  Efficient approaches for designing reversible Binary Coded Decimal adders , 2008, Microelectron. J..

[110]  Mitchell A. Thornton,et al.  Efficient adder circuits based on a conservative reversible logic gate , 2002, Proceedings IEEE Computer Society Annual Symposium on VLSI. New Paradigms for VLSI Systems Design. ISVLSI 2002.

[111]  Sanjukta Bhanja,et al.  Novel designs for thermally robust coplanar crossing in QCA , 2006, Proceedings of the Design Automation & Test in Europe Conference.

[112]  Anas N. Al-Rabadi,et al.  Closed-System Quantum Logic Network Implementation of the Viterbi Algorithm , 2009 .

[113]  Himanshu Thapliyal,et al.  Design of a reversible floating-point adder architecture , 2011, 2011 11th IEEE International Conference on Nanotechnology.

[114]  Majid Mohammadi,et al.  On figures of merit in reversible and quantum logic designs , 2009, Quantum Inf. Process..

[115]  A. Prasad Vinod,et al.  Design of Reversible Sequential Elements With Feasibility of Transistor Implementation , 2007, 2007 IEEE International Symposium on Circuits and Systems.

[116]  Kamakoti Veezhinathan,et al.  Constructing Online Testable Circuits Using Reversible Logic , 2010, IEEE Transactions on Instrumentation and Measurement.

[117]  Fabrizio Lombardi,et al.  Modeling QCA defects at molecular-level in combinational circuits , 2005, 20th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems (DFT'05).

[118]  John P. Hayes,et al.  Fault testing for reversible circuits , 2003, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[119]  Himanshu Thapliyal,et al.  Design of a reversible bidirectional barrel shifter , 2011, 2011 11th IEEE International Conference on Nanotechnology.

[120]  Himanshu Thapliyal,et al.  Design of A ternary barrel shifter using multiple-valued reversible logic , 2010, 10th IEEE International Conference on Nanotechnology.

[121]  DiVincenzo,et al.  Five two-bit quantum gates are sufficient to implement the quantum Fredkin gate. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[122]  John P. Hayes,et al.  A Family of Logical Fault Models for Reversible Circuits , 2005, 14th Asian Test Symposium (ATS'05).

[123]  N. Ranganathan,et al.  Concurrently testable FPGA design for molecular QCA using conservative reversible logic gate , 2009, 2009 IEEE International Symposium on Circuits and Systems.

[124]  松永 裕介,et al.  Customizable Framework for Arithmetic Synthesis , 2004 .