A Kalman Filter for Quasi-Dynamic o-d Flow Estimation/Updating

This paper proposes an extended Kalman filter for quasi-dynamic estimation/updating of o-d flows from traffic counts. The quasi-dynamic assumption—that is considering constant o-d shares across a reference period, whilst total flows leaving each origin may vary for each sub-period within the reference period—has been proven already realistic and effective in off-line o-d flows estimation using generalized least squares estimators. The specification of the state variables and of the corresponding transition and measurement equations of a quasi-dynamic extended Kalman filter are illustrated, and a closed-form linearization is presented under the assumption of an uncongested network and error-free assignment matrix. Results show satisfactory performance and parsimonious computational burden on real-size networks.

[1]  Haris N. Koutsopoulos,et al.  Dynamic traffic demand prediction using conventional and emerging data sources , 2006 .

[2]  Henk J van Zuylen,et al.  The most likely trip matrix estimated from traffic counts , 1980 .

[3]  E. Jenelius,et al.  c-SPSA: Cluster-wise simultaneous perturbation stochastic approximation algorithm and its application to dynamic origin–destination matrix estimation , 2015 .

[4]  Moshe E. Ben-Akiva,et al.  Alternative Approaches for Real-Time Estimation and Prediction of Time-Dependent Origin-Destination Flows , 2000, Transp. Sci..

[5]  J. Spall Multivariate stochastic approximation using a simultaneous perturbation gradient approximation , 1992 .

[6]  Hani S. Mahmassani,et al.  A structural state space model for real-time traffic origin–destination demand estimation and prediction in a day-to-day learning framework , 2007 .

[7]  Haris N. Koutsopoulos,et al.  Calibration and Validation of Dynamic Traffic Assignment Systems , 2005 .

[8]  M. Maher INFERENCES ON TRIP MATRICES FROM OBSERVATIONS ON LINK VOLUMES: A BAYESIAN STATISTICAL APPROACH , 1983 .

[9]  Ernesto Cipriani,et al.  A framework for the benchmarking of OD estimation and prediction algorithms , 2014 .

[10]  Moshe E. Ben-Akiva,et al.  Estimation and Prediction of Time-Dependent Origin-Destination Flows with a Stochastic Mapping to Path Flows and Link Flows , 2002, Transp. Sci..

[11]  Fulvio Simonelli,et al.  Limits and perspectives of effective O-D matrix correction using traffic counts , 2009 .

[12]  Moshe Ben-Akiva,et al.  W-SPSA in Practice: Approximation of Weight Matrices and Calibration of Traffic Simulation Models , 2015 .

[13]  Kalidas Ashok,et al.  DYNAMIC ORIGIN-DESTINATION MATRIX ESTIMATION AND PREDICTION FOR REAL- TIME TRAFFIC MANAGEMENT SYSTEMS , 1993 .

[14]  E. Cascetta Estimation of trip matrices from traffic counts and survey data: A generalized least squares estimator , 1984 .

[15]  Gunnar Flötteröd,et al.  Network model calibration studies , 2014 .

[16]  N. J. Van der Zijpp,et al.  DYNAMIC ORIGIN-DESTINATION MATRIX ESTIMATION ON MOTORWAY NETWORKS , 1996 .

[17]  Moshe Ben-Akiva,et al.  Off–line and on–line calibration of Dynamic Traffic Assignment Systems , 2009, CTS 2009.

[18]  Ernesto Cipriani,et al.  A Gradient Approximation Approach for Adjusting Temporal Origin–Destination Matrices , 2011 .

[19]  Gunnar Flötteröd,et al.  Efficient real time OD matrix estimation based on Principal Component Analysis , 2012, 2012 15th International IEEE Conference on Intelligent Transportation Systems.

[20]  Michel Bierlaire,et al.  An Efficient Algorithm for Real-Time Estimation and Prediction of Dynamic OD Tables , 2004, Oper. Res..

[21]  Oriol Serch,et al.  Robustness and Computational Efficiency of Kalman Filter Estimator of Time-Dependent Origin–Destination Matrices , 2013 .

[22]  I Okutani,et al.  Dynamic prediction of traffic volume through Kalman Filtering , 1984 .

[23]  Ernesto Cipriani,et al.  Improving The Reliability Of A Two-Step Dynamic Demand Estimation Approach By Sequentially Adjusting Generations And Distributions , 2015 .

[24]  Fulvio Simonelli,et al.  Quasi-dynamic estimation of o–d flows from traffic counts: Formulation, statistical validation and performance analysis on real data , 2013 .

[25]  Michael G.H. Bell,et al.  The Estimation of an Origin-Destination Matrix from Traffic Counts , 1983 .

[26]  Ennio Cascetta,et al.  Dynamic Estimators of Origin-Destination Matrices Using Traffic Counts , 1993, Transp. Sci..

[27]  H. M. Zhang,et al.  Estimating Time-Dependent Freeway Origin–Destination Demands with Different Data Coverage , 2008 .

[28]  M. Ben-Akiva,et al.  An enhanced SPSA algorithm for the calibration of Dynamic Traffic Assignment models , 2015 .