Splitting Schemes and Segregation in Reaction Cross-Diffusion Systems

One of the most fascinating phenomena observed in reaction-diffusion systems is the emergence of segregated solutions, i.e. population densities with disjoint supports. We analyse such a reaction cross-diffusion system. In order to prove existence of weak solutions for a wide class of initial data without restriction about their supports or their positivity, we propose a variational splitting scheme combining ODEs with methods from optimal transport. In addition, this approach allows us to prove conservation of segregation for initially segregated data even in the presence of vacuum.

[1]  Luigi Preziosi,et al.  Cancer Modelling and Simulation , 2003 .

[2]  Shigeru Kondo An updated kernel-based Turing model for studying the mechanisms of biological pattern formation. , 2017, Journal of theoretical biology.

[3]  Jos'e A. Carrillo,et al.  A well-posedness theory in measures for some kinetic models of collective motion , 2009, 0907.3901.

[4]  F. Santambrogio,et al.  BV Estimates in Optimal Transportation and Applications , 2015, 1503.06389.

[5]  Björn Sandstede,et al.  Modelling stripe formation in zebrafish: an agent-based approach , 2015, Journal of The Royal Society Interface.

[6]  Markus Schmidtchen,et al.  Zoology of a Nonlocal Cross-Diffusion Model for Two Species , 2017, SIAM J. Appl. Math..

[7]  Filippo Santambrogio,et al.  Optimal Transport for Applied Mathematicians , 2015 .

[8]  On a degenerate diffusion equation of the form c(z)t = ϑ(zx)x with application to population dynamics , 1987 .

[9]  José A. Carrillo,et al.  Convergence of the Mass-Transport Steepest Descent Scheme for the Subcritical Patlak-Keller-Segel Model , 2008, SIAM J. Numer. Anal..

[10]  M E Gurtin,et al.  On interacting populations that disperse to avoid crowding: preservation of segregation , 1985, Journal of mathematical biology.

[11]  J. Carrillo,et al.  A Finite-Volume Method for Nonlinear Nonlocal Equations with a Gradient Flow Structure , 2014, 1402.4252.

[12]  F. Otto THE GEOMETRY OF DISSIPATIVE EVOLUTION EQUATIONS: THE POROUS MEDIUM EQUATION , 2001 .

[13]  Axel Klar,et al.  A Multiscale Meshfree Method for Macroscopic Approximations of Interacting Particle Systems , 2014, Multiscale Model. Simul..

[14]  Masayasu Mimura,et al.  A free boundary problem arising in a simplified tumour growth model of contact inhibition , 2010 .

[15]  Martin Burger,et al.  On an aggregation model with long and short range interactions , 2007 .

[16]  Philip K Maini,et al.  On the proportion of cancer stem cells in a tumour. , 2010, Journal of theoretical biology.

[17]  Kevin J Painter,et al.  The impact of adhesion on cellular invasion processes in cancer and development. , 2010, Journal of theoretical biology.

[18]  K. Painter,et al.  A continuum approach to modelling cell-cell adhesion. , 2006, Journal of theoretical biology.

[19]  Sílvia Cuadrado,et al.  Measure Solutions for Some Models in Population Dynamics , 2013 .

[20]  Christina Surulescu,et al.  Global existence for a go-or-grow multiscale model for tumor invasion with therapy , 2016 .

[21]  D. Kinderlehrer,et al.  THE VARIATIONAL FORMULATION OF THE FOKKER-PLANCK EQUATION , 1996 .

[22]  M. Bodnar,et al.  Friction dominated dynamics of interacting particles locally close to a crystallographic lattice , 2013 .

[23]  Y. Brenier Polar Factorization and Monotone Rearrangement of Vector-Valued Functions , 1991 .

[24]  Danielle Hilhorst,et al.  A NONLINEAR PARABOLIC-HYPERBOLIC SYSTEM FOR CONTACT INHIBITION OF CELL-GROWTH , 2012 .

[25]  H. Spohn Large Scale Dynamics of Interacting Particles , 1991 .

[26]  Morteza Zadimoghaddam,et al.  Minimizing movement , 2007, SODA '07.

[27]  R. McCann A Convexity Principle for Interacting Gases , 1997 .

[28]  Kevin J Painter,et al.  Adding Adhesion to a Chemical Signaling Model for Somite Formation , 2009, Bulletin of mathematical biology.

[29]  Francis Filbet,et al.  A Finite Volume Scheme for Nonlinear Degenerate Parabolic Equations , 2011, SIAM J. Sci. Comput..

[30]  Nikolaos Sfakianakis,et al.  A Multiscale Approach to the Migration of Cancer Stem Cells: Mathematical Modelling and Simulations , 2016, Bulletin of mathematical biology.

[31]  Ansgar Jüngel,et al.  Entropy Dissipation Methods for Degenerate ParabolicProblems and Generalized Sobolev Inequalities , 2001 .

[32]  J. Carrillo,et al.  Nonlinear Diffusion: Geodesic Convexity is Equivalent to Wasserstein Contraction , 2013, 1309.1932.

[33]  M. Chaplain,et al.  Mathematical modelling of cancer cell invasion of tissue: local and non-local models and the effect of adhesion. , 2008 .

[34]  Karl Oelschläger,et al.  Large systems of interacting particles and the porous medium equation , 1990 .

[35]  H. Murakawa,et al.  Continuous models for cell-cell adhesion. , 2015, Journal of theoretical biology.

[36]  K. Painter,et al.  Volume-filling and quorum-sensing in models for chemosensitive movement , 2002 .

[37]  J. Vázquez The Porous Medium Equation , 2006 .

[38]  L. Ambrosio,et al.  Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .

[39]  Alf Gerisch,et al.  Mathematical modelling of cancer invasion: implications of cell adhesion variability for tumour infiltrative growth patterns. , 2014, Journal of theoretical biology.

[40]  C. Villani Topics in Optimal Transportation , 2003 .

[41]  C. Villani Optimal Transport: Old and New , 2008 .

[42]  José A. Carrillo,et al.  Volume effects in the Keller-Segel model : energy estimates preventing blow-up , 2006 .

[43]  M. Chaplain,et al.  Mathematical modelling of cancer cell invasion of tissue , 2005, Math. Comput. Model..

[44]  Piotr Gwiazda,et al.  STRUCTURED POPULATION EQUATIONS IN METRIC SPACES , 2010 .

[45]  Helmut Neunzert,et al.  An introduction to the nonlinear Boltzmann-Vlasov equation , 1984 .

[46]  Morton E. Gurtin,et al.  A note on interacting populations that disperse to avoid crowding , 1984 .