Approximating the Volume of General Pfaffian Bodies

We introduce a new powerful method of approximating the volume (and integrals) of vast number of geometric bodies defined by boolean combinations of Pfaffian conditions. The method depends on the polynomial bounds on the VC - Dimensions of the classes of sets to be measured. The resulting approximation algorithms are quite different in spirit from the other up to now known methods, and gives efficient randomized solutions even for such seemingly untouchable problems of statistical physics like computing the volume of sets defined by the ssystems of exponential and polynomial inequalities.

[1]  Allan Borodin,et al.  On the decidability of sparse univariate polynomial interpolation , 1990, STOC '90.

[2]  Marek Karpinski,et al.  Polynomial bounds for VC dimension of sigmoidal neural networks , 1995, STOC '95.

[3]  John Shawe-Taylor Sample sizes for sigmoidal neural networks , 1995, COLT '95.

[4]  Jan Denef,et al.  P-adic and real subanalytic sets , 1988 .

[5]  Marek Karpinski,et al.  Bounding VC-dimension of neural networks: Progress and prospects , 1995, EuroCOLT.

[6]  A. Wilkie Model completeness results for expansions of the ordered field of real numbers by restricted Pfaffian functions and the exponential function , 1996 .

[7]  J. Milnor On the Betti numbers of real varieties , 1964 .

[8]  Marek Karpinski,et al.  Polynomial Bounds for VC Dimension of Sigmoidal and General Pfaffian Neural Networks , 1997, J. Comput. Syst. Sci..

[9]  Eduardo D. Sontag,et al.  Finiteness results for sigmoidal “neural” networks , 1993, STOC.

[10]  Miklós Simonovits,et al.  The mixing rate of Markov chains, an isoperimetric inequality, and computing the volume , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[11]  Wolfgang Maass,et al.  Bounds for the computational power and learning complexity of analog neural nets , 1993, SIAM J. Comput..

[12]  Martin Anthony,et al.  Computational learning theory: an introduction , 1992 .

[13]  Wolfgang Maass,et al.  Perspectives of Current Research about the Complexity of Learning on Neural Nets , 1994 .

[14]  Pascal Koiran,et al.  Approximating the volume of definable sets , 1995, Proceedings of IEEE 36th Annual Foundations of Computer Science.

[15]  J. Renegar,et al.  On the Computational Complexity and Geometry of the First-Order Theory of the Reals, Part I , 1989 .

[16]  James Renegar On the computational complexity and geome-try of the first-order theory of the reals , 1992 .

[17]  Michael C. Laskowski,et al.  Vapnik-Chervonenkis classes of definable sets , 1992 .

[18]  Paul W. Goldberg,et al.  Bounding the Vapnik-Chervonenkis Dimension of Concept Classes Parameterized by Real Numbers , 1993, COLT '93.

[19]  David Haussler,et al.  Learnability and the Vapnik-Chervonenkis dimension , 1989, JACM.

[20]  John Shawe-Taylor,et al.  A Result of Vapnik with Applications , 1993, Discret. Appl. Math..

[21]  Martin E. Dyer,et al.  On the Complexity of Computing the Volume of a Polyhedron , 1988, SIAM J. Comput..

[22]  Eduardo D. Sontag,et al.  Neural Networks with Quadratic VC Dimension , 1995, J. Comput. Syst. Sci..

[23]  Bruno Poizat,et al.  Groupes stables, avec types génériques réguliers , 1983, Journal of Symbolic Logic.

[24]  L. Dries,et al.  Geometric categories and o-minimal structures , 1996 .

[25]  Georg Schnitger,et al.  On the computational power of sigmoid versus Boolean threshold circuits , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[26]  Eduardo D. Sontag,et al.  Feedforward Nets for Interpolation and Classification , 1992, J. Comput. Syst. Sci..

[27]  Marek Karpinski,et al.  VC Dimension and Uniform Learnability of Sparse Polynomials and Rational Functions , 1993, SIAM J. Comput..

[28]  David Haussler,et al.  Decision Theoretic Generalizations of the PAC Model for Neural Net and Other Learning Applications , 1992, Inf. Comput..

[29]  L. van den Dries,et al.  Tame Topology and O-minimal Structures , 1998 .

[30]  Anders Krogh,et al.  Introduction to the theory of neural computation , 1994, The advanced book program.

[31]  Françoise Delon Définissabilité avec paramètres extérieurs dans _{} et , 1989 .

[32]  J. Milnor Topology from the differentiable viewpoint , 1965 .

[33]  James Renegar,et al.  On the Computational Complexity and Geometry of the First-Order Theory of the Reals, Part I: Introduction. Preliminaries. The Geometry of Semi-Algebraic Sets. The Decision Problem for the Existential Theory of the Reals , 1992, J. Symb. Comput..

[34]  H. Warren Lower bounds for approximation by nonlinear manifolds , 1968 .

[35]  Martin E. Dyer,et al.  A random polynomial-time algorithm for approximating the volume of convex bodies , 1991, JACM.

[36]  Jan Denef,et al.  The rationality of the Poincaré series associated to thep-adic points on a variety , 1984 .

[37]  A. Sard,et al.  The measure of the critical values of differentiable maps , 1942 .

[38]  G. Hardy Properties of Logarithmico‐Exponential Functions , 2022 .

[39]  A. Macintyre,et al.  The Elementary Theory of Restricted Analytic Fields with Exponentiation , 1994 .

[40]  Christopher M. Bishop,et al.  Advances in Neural Information Processing Systems 8 (NIPS 1995) , 1991 .

[41]  G. Carpenter In Providence, R. I. , 1929 .