A Tight Lower Bound for the Weights of Maximum Weight Matching in Bipartite Graphs

Let $\Ga$ be the collection of all weighted bipartite graphs each having $\sigma$ and $m$, as the size of a vertex partition and the total weight, respectively. We give a tight lower bound $\lceil \frac{m-\sigma}{\sigma} \rceil+1$ for the set $\{\textit{Wt}(\textit{mwm}(G))~|~G \in \Ga\}$ which denotes the collection of weights of maximum weight bipartite matchings of all graphs in $\Ga$.

[1]  Ming-Yang Kao,et al.  A Decomposition Theorem for Maximum Weight Bipartite Matchings , 2000, SIAM J. Comput..

[2]  J. A. Bondy,et al.  Graph Theory with Applications , 1978 .

[3]  Piotr Sankowski,et al.  Maximum weight bipartite matching in matrix multiplication time , 2009, Theor. Comput. Sci..

[4]  Kalpesh Kapoor,et al.  Fine-Tuning Decomposition Theorem for Maximum Weight Bipartite Matching , 2014, TAMC.

[5]  Ming-Yang Kao,et al.  A Decomposition Theorem for Maximum Weight Bipartite Matchings with Applications to Evolutionary Trees , 1999, ESA.

[6]  Robert E. Tarjan,et al.  Fibonacci heaps and their uses in improved network optimization algorithms , 1984, JACM.

[7]  Ran Duan,et al.  Approximating Maximum Weight Matching in Near-Linear Time , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[8]  Shibsankar Das On approximate parameterized string matching and related problems , 2016 .

[9]  Robert E. Tarjan,et al.  Faster Scaling Algorithms for Network Problems , 1989, SIAM J. Comput..

[10]  R. K. Shyamasundar,et al.  Introduction to algorithms , 1996 .

[11]  Alexander Schrijver,et al.  Combinatorial optimization. Polyhedra and efficiency. , 2003 .

[12]  H. Bunke Graph Matching : Theoretical Foundations , Algorithms , and Applications , 2022 .

[13]  Jens Vygen,et al.  The Book Review Column1 , 2020, SIGACT News.

[14]  Benn Thomsen,et al.  A High Speed Hardware Scheduler for 1000-Port Optical Packet Switches to Enable Scalable Data Centers , 2017, 2017 IEEE 25th Annual Symposium on High-Performance Interconnects (HOTI).

[15]  Moshe Lewenstein,et al.  Approximate Parameterized Matching , 2004, ESA.

[16]  Harold N. Gabow Scaling Algorithms for Network Problems , 1985, J. Comput. Syst. Sci..