Modeling and Simulation of Microelectromechanical Systems in Multi-Physics Fields

[1]  C. Zener INTERNAL FRICTION IN SOLIDS. I. THEORY OF INTERNAL FRICTION IN REEDS , 1937 .

[2]  C. Zener,et al.  Intercrystalline Thermal Currents as a Source of Internal Friction , 1939 .

[3]  A. Burgdorfer The Influence of the Molecular Mean Free Path on the Performance of Hydrodynamic Gas Lubricated Bearings , 1959 .

[4]  S. Timoshenko,et al.  THEORY OF PLATES AND SHELLS , 1959 .

[5]  J. H. Weiner,et al.  Theory of Thermal Stresses , 1961 .

[6]  R. Christian The theory of oscillating-vane vacuum gauges , 1966 .

[7]  W. Newell Miniaturization of tuning forks. , 1968, Science.

[8]  J. Z. Zhu,et al.  The finite element method , 1977 .

[9]  C. Chia Nonlinear analysis of plates , 1980 .

[10]  A. Nayfeh Introduction To Perturbation Techniques , 1981 .

[11]  J. J. Blech On Isothermal Squeeze Films , 1983 .

[12]  S. Fukui,et al.  Analysis of Ultra-Thin Gas Film Lubrication Based on Linearized Boltzmann Equation: First Report—Derivation of a Generalized Lubrication Equation Including Thermal Creep Flow , 1988 .

[13]  J. B. Starr Squeeze-film damping in solid-state accelerometers , 1990, IEEE 4th Technical Digest on Solid-State Sensor and Actuator Workshop.

[14]  T. Roszhart The effect of thermoelastic internal friction on the Q of micromachined silicon resonators , 1990, IEEE 4th Technical Digest on Solid-State Sensor and Actuator Workshop.

[15]  H. Riedel,et al.  Capacitive silicon accelerometer with highly symmetrical design , 1990 .

[16]  Miko Elwenspoek,et al.  Micro resonant force gauges , 1992 .

[17]  B. E. Artz,et al.  A finite element method for determining structural displacements resulting from electrostatic forces , 1992, Technical Digest IEEE Solid-State Sensor and Actuator Workshop.

[18]  D. W. Burns,et al.  Characteristics of polysilicon resonant microbeams , 1992 .

[19]  M. K. Andrews,et al.  A comparison of squeeze-film theory with measurements on a microstructure , 1993 .

[20]  H. Tilmans,et al.  Electrostatically driven vacuum encapsulated polysilicon resonators , 1993 .

[21]  B. Hamrock,et al.  Fundamentals of Fluid Film Lubrication , 1994 .

[22]  H. Tilmans,et al.  Electrostatically driven vacuum-encapsulated polysilicon resonators part II. theory and performance , 1994 .

[23]  H. Tilmans,et al.  Electrostatically driven vacuum-encapsulated polysilicon resonators Part I. Design and fabrication , 1994 .

[24]  J. Fluitman,et al.  Q-factor dependence of one-port encapsulated polysilicon resonator on reactive sealing pressure , 1995 .

[25]  S. Senturia,et al.  3D coupled electro-mechanics for MEMS: applications of CoSolve-EM , 1995, Proceedings IEEE Micro Electro Mechanical Systems. 1995.

[26]  A. Nayfeh,et al.  Applied nonlinear dynamics : analytical, computational, and experimental methods , 1995 .

[27]  T. Veijola,et al.  Equivalent-circuit model of the squeezed gas film in a silicon accelerometer , 1995 .

[28]  K. Pister,et al.  Dynamics of polysilicon parallel-plate electrostatic actuators , 1996 .

[29]  Wilko J. Kindt,et al.  Quality factor of torsional resonators in the low-pressure region , 1996 .

[30]  M. Gretillat,et al.  Effect of air damping on the dynamics of nonuniform deformations of microstructures , 1997, Proceedings of International Solid State Sensors and Actuators Conference (Transducers '97).

[31]  T. Veijola,et al.  Model for gas film damping in a silicon accelerometer , 1997, Proceedings of International Solid State Sensors and Actuators Conference (Transducers '97).

[32]  Jacob K. White,et al.  Simulating the behavior of MEMS devices: computational methods and needs , 1997 .

[33]  Miko Elwenspoek,et al.  Nonlinearity and Hysteresis of Resonant Strain Gauges , 1998 .

[34]  S. Mukherjee,et al.  Squeeze film damping effect on the dynamic response of a MEMS torsion mirror , 1998 .

[35]  Robert B. Darling,et al.  Compact analytical modeling of squeeze film damping with arbitrary venting conditions using a Green's function approach , 1998 .

[36]  Joseph Y.-J. Young,et al.  Squeeze-film damping for MEMS structures , 1998 .

[37]  Zhonghe Jin,et al.  Electrostatic resonator with second superharmonic resonance , 1998 .

[38]  S. D. Senturia,et al.  Generating efficient dynamical models for microelectromechanical systems from a few finite-element simulation runs , 1999 .

[39]  B. E. Alaca,et al.  Analytical modeling of electrostatic membrane actuator for micro pumps , 1999 .

[40]  Changchun Zhu,et al.  The theoretical analysis on damping characteristics of resonant microbeam in vacuum , 1999 .

[41]  J. N. Reddy,et al.  Theory and analysis of elastic plates , 1999 .

[42]  S. Senturia Microsystem Design , 2000 .

[43]  L. Sekaric,et al.  Temperature-dependent internal friction in silicon nanoelectromechanical systems , 2000 .

[44]  Gary X. Li,et al.  Review of viscous damping in micromachined structures , 2000, SPIE MOEMS-MEMS.

[45]  M. Roukes,et al.  Thermoelastic damping in micro- and nanomechanical systems , 1999, cond-mat/9909271.

[46]  Gary K. Fedder,et al.  Low-Order Squeeze Film Model for Simulation of MEMS Devices , 2000 .

[47]  M. Gad-el-Hak Design and Fabrication , 2001 .

[48]  Compact Squeezed-Film Damping Model Including the Open Border Effects , 2001 .

[49]  Mohammad Ibrahim Younis Investigation of the Mechanical Behavior of Microbeam-Based MEMS Devices , 2001 .

[50]  Martin Duemling Modeling and characterization of nanoelectromechanical systems , 2002 .

[51]  Ali H. Nayfeh,et al.  Static and Dynamic Behavior of an Electrically Excited Resonant Microbeam , 2002 .

[52]  K. A. Jose,et al.  RF MEMS and Their Applications , 2002 .

[53]  Ali H. Nayfeh,et al.  Characterization of the mechanical behavior of an electrically actuated microbeam , 2002 .

[54]  Yuancheng Sun,et al.  Energy transfer model for squeeze-film air damping in low vacuum , 2002 .

[55]  Gerhard Wachutka Coupled-field modeling of microdevices and microsystems , 2002, International Conferencre on Simulation of Semiconductor Processes and Devices.

[56]  Gerhard Wachutka,et al.  Physically based modeling of squeeze film damping by mixed-level system simulation , 2002 .

[57]  George G. Adams,et al.  A dynamic model, including contact bounce, of an electrostatically actuated microswitch , 2002 .

[58]  J. Borenstein,et al.  Experimental study of thermoelastic damping in MEMS gyros , 2003 .

[59]  S. Krylov,et al.  Pull-In Dynamics of an Elastic Beam Actuated by Distributed Electrostatic Force , 2003 .

[60]  Ali H. Nayfeh,et al.  Dynamics of an electrically actuated resonant microsensor , 2003, Proceedings International Conference on MEMS, NANO and Smart Systems.

[61]  A. Nayfeh,et al.  Secondary resonances of electrically actuated resonant microsensors , 2003 .

[62]  Ali H. Nayfeh,et al.  A reduced-order model for electrically actuated microbeam-based MEMS , 2003 .

[63]  Eric Beyne,et al.  MEMS for wireless communications: ‘from RF-MEMS components to RF-MEMS-SiP’ , 2003 .

[64]  Ali H. Nayfeh,et al.  A Nonlinear Reduced-Order Model for Electrostatic MEMS , 2003 .

[65]  M. Younis,et al.  A Study of the Nonlinear Response of a Resonant Microbeam to an Electric Actuation , 2003 .

[66]  M. Younis,et al.  A new approach to the modeling and simulation of flexible microstructures under the effect of squeeze-film damping , 2004 .

[67]  A. Nayfeh,et al.  Institute of Physics Publishing Journal of Micromechanics and Microengineering a Reduced-order Model for Electrically Actuated Microplates , 2022 .

[68]  Arthur W. Leissa,et al.  Vibration of Plates , 2021, Solid Acoustic Waves and Vibration.