Anti-diffusive High Order WENO Schemes for Hamilton-Jacobi Equations

Abstract. In this paper, we generalize the technique of anti-diffusive flux corrections for high order finite difference WENO schemes solving conservation laws in [21], to solve Hamilton-Jacobi equations. The objective is to obtain sharp resolution for kinks, which are derivative discontinuities in the viscosity solutions of Hamilton-Jacobi equations. We would like to resolve kinks better while maintaining high order accuracy in smooth regions. Numerical examples for one and two space dimensional problems demonstrate the good quality of these Hamiltonian corrected WENO schemes.

[1]  Wang Hai-bing,et al.  High-order essentially non-oscillatory schemes for Hamilton-Jacobi equations , 2006 .

[2]  Bruno Després,et al.  Contact Discontinuity Capturing Schemes for Linear Advection and Compressible Gas Dynamics , 2002, J. Sci. Comput..

[3]  S. Osher,et al.  Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .

[4]  Chi-Wang Shu,et al.  A Discontinuous Galerkin Finite Element Method for Hamilton-Jacobi Equations , 1999, SIAM J. Sci. Comput..

[5]  Danping Peng,et al.  Weighted ENO Schemes for Hamilton-Jacobi Equations , 1999, SIAM J. Sci. Comput..

[6]  R. LeVeque High-resolution conservative algorithms for advection in incompressible flow , 1996 .

[7]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous galerkin finite element method for conservation laws. II: General framework , 1989 .

[8]  S. Osher,et al.  Weighted essentially non-oscillatory schemes , 1994 .

[9]  Chi-Wang Shu,et al.  Reinterpretation and simplified implementation of a discontinuous Galerkin method for Hamilton-Jacobi equations , 2005, Appl. Math. Lett..

[10]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[11]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[12]  S. Osher,et al.  Algorithms Based on Hamilton-Jacobi Formulations , 1988 .

[13]  François Bouchut,et al.  An Antidiffusive Entropy Scheme for Monotone Scalar Conservation Laws , 2004, J. Sci. Comput..

[14]  Chi-Wang Shu Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws , 1998 .

[15]  Chi-Wang Shu,et al.  Anti-diffusive flux corrections for high order finite difference WENO schemes , 2005 .

[16]  Chi-Wang Shu,et al.  High-Order WENO Schemes for Hamilton-Jacobi Equations on Triangular Meshes , 2003, SIAM J. Sci. Comput..

[17]  Chi-Wang Shu,et al.  The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case , 1990 .

[18]  S. Osher,et al.  High-order essentially nonsocillatory schemes for Hamilton-Jacobi equations , 1990 .

[19]  P. Lions,et al.  Two approximations of solutions of Hamilton-Jacobi equations , 1984 .

[20]  Chi-Wang Shu,et al.  A technique of treating negative weights in WENO schemes , 2000 .

[21]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[22]  Chi-Wang Shu,et al.  Analysis of the discontinuous Galerkin method for Hamilton—Jacobi equations , 2000 .