A model system approach to biological climate forcing : The example of Emiliania huxleyi
暂无分享,去创建一个
Michael Knappertsbusch | Emilio Fernández | Colin Brownlee | Judith van Bleijswijk | C. Brown | C. Brownlee | M. Veldhuis | E. Fernández | M. Conte | J. Young | P. Westbroek | P. Wal | J. Egge | J. Stefels | G. Brummer | J. Bleijswijk | Maureen H. Conte | Chris W. Brown | Jacqueline Stefels | Jeremy R. Young | Jorun K. Egge | Paul van der Wal | Peter Westbroek | Geert Jan Brummer | Ric Jordan | Marcel J.W. Veldhuis | M. Knappertsbusch | R. Jordan
[1] P. Holligan,et al. Satellite and ship studies of coccolithophore production along a continental shelf edge , 1983, Nature.
[2] A. Mcintyre,et al. Modern coccolithophoridae of the atlantic ocean—I. Placoliths and cyrtoliths , 1967 .
[3] E. Kuenzler. GLUCOSE‐6‐PHOSPHATE UTILIZATION BY MARINE ALGAE 1 , 1965 .
[4] S. Brassell,et al. Long chain unsaturated ketones and esters in living algae and marine sediments , 1984 .
[5] I. Morris,et al. Photosynthetic carboxylating enzymes in marine phytoplankton , 1979 .
[6] N. Watabe,et al. EXPERIMENTAL STUDIES ON CALCIFICATION IN MOLLUSCS AND THE ALGA COCCOLITHUS HUXLEYI , 1963, Annals of the New York Academy of Sciences.
[7] K. Simkiss,et al. Biomineralization : cell biology and mineral deposition , 1989 .
[8] N. Nimer,et al. Dissolved inorganic carbon utilization in relation to calcite production in Emiliania huxleyi (Lohmann) Kamptner , 1993 .
[9] A. Sorribas,et al. Theoretical analysis of the flux control properties of a substrate cycle. , 1986, European Journal of Biochemistry.
[10] E. de Jong,et al. Isolation and characterization of a Ca2+ -binding polysaccharide associated with coccoliths of Emiliania huxleyi (Lohmann) Kamptner. , 1976, European journal of biochemistry.
[11] C. Sikes,et al. Photosynthesis and coccolith formation: Inorganic carbon sources and net inorganic reaction of deposition1 , 1980 .
[12] E. Paasche. The Effect of 3-(p-Chlorophenyl)-1,1-Dimethylurea (CMU) on Photosynthesis and Light-Dependent Cocoolith Formation in Coccolithus huxleyi , 1965 .
[13] I. Morris,et al. 1: Enzymes in phytoplankton , 1979 .
[14] S. Warren,et al. Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate , 1987, Nature.
[15] H. Okada,et al. Distribution of coccolithophores in marginal seas along the western Pacific Ocean and in the Red Sea , 1975 .
[16] Stephen Mann,et al. Crystal assembly and phylogenetic evolution in heterococcoliths , 1992, Nature.
[17] W. Balch,et al. Calcification, photosynthesis and growth of the bloom-forming coccolithophore, Emiliania huxleyi , 1992 .
[18] N. Nimer,et al. Calcification and utilization of inorganic carbon by the coccolithophorid Emiliania huxleyi Lohmann , 1992 .
[19] G. Muyzer,et al. DISTRIBUTION OF TWO TYPES OF EMILIANIA HUXLEYI (PRYMNESIOPHYCEAE) IN THE NORTHEAST ATLANTIC REGION AS DETERMINED BY IMMUNOFLUORESCENCE AND COCCOLITH MORPHOLOGY 1 , 1991 .
[20] R. Jordan. Coccolithophorid Communities in the North-East Atlantic , 1988 .
[21] M. Brongersma-Sanders. Chapter 29: Mass Mortality in the Sea , 1957 .
[22] Sebastiaan A.L.M. Kooijman,et al. Dynamic Energy Budgets in Biological Systems: Theory and Applications in Ecotoxicology , 1993 .
[23] Sebastiaan A.L.M. Kooijman,et al. Dynamic energy budgets in biological systems , 1993 .
[24] A. Mcintyre. Coccoliths as Paleoclimatic Indicators of Pleistocene Glaciation , 1967, Science.
[25] K. Mann,et al. Dynamics of Marine Ecosystems , 1991 .
[26] F. Prahl,et al. Calibration of unsaturation patterns in long-chain ketone compositions for palaeotemperature assessment , 1987, Nature.
[27] G. Eglinton,et al. Long-chain alkenones and alkyl alkenoates as palaeotemperature indicators: their production, flux and early sedimentary diagenesis in the Eastern North Atlantic , 1992 .
[28] D. Kok,et al. Polysaccharide from coccoliths (CaCO3 biomineral). Influence on crystallization of calcium oxalate monohydrate. , 1986, European journal of biochemistry.
[29] U. Colombo,et al. Advances in Organic Geochemistry , 1964 .
[30] L. Brand. Genetic variability and spatial patterns of genetic differentiation in the reproductive rates of the marine coccolithophores Emiliania huxleyi and Gephyrocapsa oceanica1,2 , 1982 .
[31] S. Brassell,et al. Long-chain alkenones and alkyl alkenoates and the fossil coccolith record of marine sediments , 1990 .
[32] P. Westbroek,et al. COCCOLITH‐ASSOCIATED POLYSACCHARIDES FROM CELLS OF EMILIANIA HUXLEYI (HAPTOPHYCEAE) 1 , 1987 .
[33] B. Wilkinson,et al. Sedimentary carbonate record of calcium-magnesium cycling , 1989 .
[34] W. Balch,et al. Biological and optical properties of mesoscale coccolithophore blooms in the Gulf of Maine , 1991 .
[35] E. de Jong,et al. Biocalcification by the marine alga Emiliania huxleyi (Lohmann) Kamptner. , 1979, European journal of biochemistry.
[36] Laurel A Muehlhausen,et al. Further evaluation of long-chain alkenones as indicators of paleoceanographic conditions , 1988 .
[37] P. Boyd,et al. Production Of Organic And Inorganic Carbon Within A Large-Scale Coccolithophore Bloom In The Northeast Atlantic-Ocean , 1993 .
[38] E. de Jong,et al. The role in CaCO3 crystallization of an acid Ca2+-binding polysaccharide associated with coccoliths of Emiliania huxleyi. , 1982, European journal of biochemistry.
[39] W. Balch,et al. From the Ocean to Cells: Coccolithophore Optics and Biogeochemistry , 1991 .
[40] D. Sanders,et al. Depletion of cytosolic free calcium induced by photosynthesis , 1987, Nature.
[41] G. Eglinton,et al. Molecular stratigraphy: a new tool for climatic assessment , 1986, Nature.
[42] E. Paasche. A tracer study of the inorganic carbon uptake during coccolith formation and photosynthesis in the coccolithophorid Coccolithus huxleyi , 1964 .
[43] G. Eglinton,et al. Novel unsaturated straight-chain C37C39 methyl and ethyl ketones in marine sediments and a coccolithophore Emiliania huxleyi , 1980 .
[44] D. Klaveness. Coccolithus huxleyi (Lohm.) Kamptn II. The flagellate cell, aberrant cell types, vegetative propagation and life cycles , 1972 .
[45] R. Brereton,et al. Palaeoclimatic signals recognized by chemometric treatment of molecular stratigraphic data , 1986 .
[46] M. D. Keller,et al. Dimethylsulfide in a large-scale coccolithophore bloom in the Gulf of Maine , 1993 .
[47] J. Hayes,et al. A carbon isotope record of CO2 levels during the late Quaternary , 1990, Nature.
[48] M. S. Finch,et al. A biogeochemical study of the coccolithophore, Emiliania huxleyi, in the North Atlantic , 1993 .
[49] J. Farrington,et al. Use of the alkenone unsaturation ratio U37k to determine past sea surface temperatures: core-top SST calibrations and methodology considerations , 1991 .
[50] S. Brassell. Applications of Biomarkers for Delineating Marine Paleoclimatic Fluctuations during the Pleistocene , 1993 .
[51] C. Brown,et al. Coccolithophorid blooms in the global ocean , 1994 .
[52] P. Westbroek,et al. ROLE OF THE LIGHT‐DARK CYCLE AND MEDIUM COMPOSITION ON THE PRODUCTION OF COCCOLITHS BY EMILIANIA HUXLEYI (HAPTOPHYCEAE) 1 , 1991 .
[53] D. L. Aksnes,et al. Silicate as regulating nutrient in phytoplankton competition , 1992 .
[54] J. D. Hays,et al. The Last Interglacial Ocean , 1984, Quaternary Research.
[55] C. Sikes,et al. Functions of coccolith formation1 , 1982 .
[56] G. Eglinton,et al. Early diagenesis of organic compounds in deep sea sediments , 1991 .
[57] B. Molfino,et al. Global synchroneity of late Quaternary coccolith datum levels Validation by oxygen isotopes , 1977 .
[58] M. S. Finch,et al. The impact of a coccolithophore bloom on oceanic carbon uptake in the northeast Atlantic during summer 1991 , 1994 .
[59] E. Kuenzler,et al. PHOSPHATASES OF MARINE ALGAE , 1965 .
[60] S. Brassell,et al. 22. MOLECULAR STRATIGRAPHIC STUDY OF SEDIMENTS FROM HOLES 658A AND 660A, LEG 1081 , 1989 .
[61] J. Kamerling,et al. Structural studies of the methylated, acidic polysaccharide associated with coccoliths of Emiliania huxleyi (Lohmann) Kamptner , 1981 .
[62] F. A. Varkevisser,et al. Molar mass determination of the polysaccharide associated with coccoliths of emiliania huxleyi , 1986 .
[63] Biogenic sulfur in the environment , 1989 .
[64] G. Bratbak,et al. Viral mortality of the marine alga Emiliania huxleyi (Haptophyceae) and termination of algal blooms , 1993 .
[65] G. Eglinton,et al. 35. A MOLECULAR STRATIGRAPHIC STUDY OF PERU MARGIN SEDIMENTS, HOLE 686B, LEG 112 1 , 1990 .
[66] J. Young,et al. Genotypic variation in the coccolithophorid speciesEmiliania huxleyi , 1991 .
[67] S. Wakeham,et al. Variations in the distributions and isotopic composition of alkenones in Black Sea particles and sediments , 1992 .
[68] K. Chave. Carbonates: Association with Organic Matter in Surface Seawater , 1965, Science.
[69] M. D. Keller,et al. Dimethylsulfide production in marine phytoplankton. , 1989 .
[70] P. Holligan. Do Marine Phytoplankton Influence Global Climate , 1992 .
[71] M. Sarnthein,et al. Molecular record of secular sea surface temperature changes on 100-year timescales for glacial terminations I, II and IV , 1992, Nature.
[72] G. Eglinton,et al. Alkenone and alkenoate distributions within the euphotic zone of the eastern North Atlantic: correlation with production temperature , 1993 .
[73] W. Daems,et al. Immunochemical localization of a polysaccharide from biomineral structures (coccoliths) of , 1986 .
[74] M. Veldhuis,et al. Growth and Fluorescence Characteristics of Ultraplankton on a North South Transect in the Eastern North-Atlantic , 1993 .
[75] A. Mcintyre,et al. Seasonal distribution of modern coccolithophores in the western North Atlantic Ocean , 1979 .
[76] F. Prahl,et al. Post-depositional stability of long-chain alkenones under contrasting redox conditions , 1989, Nature.
[77] G. Cadée,et al. Phaeocystis blooms and eutrophication of the continental coastal zones of the North Sea , 1992 .