A model system approach to biological climate forcing : The example of Emiliania huxleyi

Abstract Particulate inorganic carbon (calcium carbonate mineral) is produced by pelagic calcifying organisms in the upper layers of the open ocean, it sinks to the deep sea, is partly dissolved and partly stored in the geological archive. This phenomenon, known as the carbonate pump, is an important component of the global carbon cycle and exerts a major influence on climate. The amount of carbonate mineral produced depends on the evolutionary and ecological success of calcifying pelagic organisms. The formulation of adequate predictive carbonate pump modules raises the problem that the behaviour of this highly diverse set of organisms needs to be taken into account. To overcome this difficulty, we propose a “model system” approach, whereby a single representative organism, the coccolithophore Emiliania huxleyi , is investigated in detailed interactive experimental and modelling studies. To construct a comprehensive model of the carbonate pump, subsequent research is envisaged on additional representative organisms, but this work is likely to be facilitated by the experience gained with E. huxleyi . The model system approach permits (1) an emphasis on the non-linear character of the fluxes; (2) a focus on the coupling of the carbonate pump with other climatically important phenomena — the organic carbon pump and DMS production; and (3) exploitation of the experimental accessibility of the E. huxleyi system.

[1]  P. Holligan,et al.  Satellite and ship studies of coccolithophore production along a continental shelf edge , 1983, Nature.

[2]  A. Mcintyre,et al.  Modern coccolithophoridae of the atlantic ocean—I. Placoliths and cyrtoliths , 1967 .

[3]  E. Kuenzler GLUCOSE‐6‐PHOSPHATE UTILIZATION BY MARINE ALGAE 1 , 1965 .

[4]  S. Brassell,et al.  Long chain unsaturated ketones and esters in living algae and marine sediments , 1984 .

[5]  I. Morris,et al.  Photosynthetic carboxylating enzymes in marine phytoplankton , 1979 .

[6]  N. Watabe,et al.  EXPERIMENTAL STUDIES ON CALCIFICATION IN MOLLUSCS AND THE ALGA COCCOLITHUS HUXLEYI , 1963, Annals of the New York Academy of Sciences.

[7]  K. Simkiss,et al.  Biomineralization : cell biology and mineral deposition , 1989 .

[8]  N. Nimer,et al.  Dissolved inorganic carbon utilization in relation to calcite production in Emiliania huxleyi (Lohmann) Kamptner , 1993 .

[9]  A. Sorribas,et al.  Theoretical analysis of the flux control properties of a substrate cycle. , 1986, European Journal of Biochemistry.

[10]  E. de Jong,et al.  Isolation and characterization of a Ca2+ -binding polysaccharide associated with coccoliths of Emiliania huxleyi (Lohmann) Kamptner. , 1976, European journal of biochemistry.

[11]  C. Sikes,et al.  Photosynthesis and coccolith formation: Inorganic carbon sources and net inorganic reaction of deposition1 , 1980 .

[12]  E. Paasche The Effect of 3-(p-Chlorophenyl)-1,1-Dimethylurea (CMU) on Photosynthesis and Light-Dependent Cocoolith Formation in Coccolithus huxleyi , 1965 .

[13]  I. Morris,et al.  1: Enzymes in phytoplankton , 1979 .

[14]  S. Warren,et al.  Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate , 1987, Nature.

[15]  H. Okada,et al.  Distribution of coccolithophores in marginal seas along the western Pacific Ocean and in the Red Sea , 1975 .

[16]  Stephen Mann,et al.  Crystal assembly and phylogenetic evolution in heterococcoliths , 1992, Nature.

[17]  W. Balch,et al.  Calcification, photosynthesis and growth of the bloom-forming coccolithophore, Emiliania huxleyi , 1992 .

[18]  N. Nimer,et al.  Calcification and utilization of inorganic carbon by the coccolithophorid Emiliania huxleyi Lohmann , 1992 .

[19]  G. Muyzer,et al.  DISTRIBUTION OF TWO TYPES OF EMILIANIA HUXLEYI (PRYMNESIOPHYCEAE) IN THE NORTHEAST ATLANTIC REGION AS DETERMINED BY IMMUNOFLUORESCENCE AND COCCOLITH MORPHOLOGY 1 , 1991 .

[20]  R. Jordan Coccolithophorid Communities in the North-East Atlantic , 1988 .

[21]  M. Brongersma-Sanders Chapter 29: Mass Mortality in the Sea , 1957 .

[22]  Sebastiaan A.L.M. Kooijman,et al.  Dynamic Energy Budgets in Biological Systems: Theory and Applications in Ecotoxicology , 1993 .

[23]  Sebastiaan A.L.M. Kooijman,et al.  Dynamic energy budgets in biological systems , 1993 .

[24]  A. Mcintyre Coccoliths as Paleoclimatic Indicators of Pleistocene Glaciation , 1967, Science.

[25]  K. Mann,et al.  Dynamics of Marine Ecosystems , 1991 .

[26]  F. Prahl,et al.  Calibration of unsaturation patterns in long-chain ketone compositions for palaeotemperature assessment , 1987, Nature.

[27]  G. Eglinton,et al.  Long-chain alkenones and alkyl alkenoates as palaeotemperature indicators: their production, flux and early sedimentary diagenesis in the Eastern North Atlantic , 1992 .

[28]  D. Kok,et al.  Polysaccharide from coccoliths (CaCO3 biomineral). Influence on crystallization of calcium oxalate monohydrate. , 1986, European journal of biochemistry.

[29]  U. Colombo,et al.  Advances in Organic Geochemistry , 1964 .

[30]  L. Brand Genetic variability and spatial patterns of genetic differentiation in the reproductive rates of the marine coccolithophores Emiliania huxleyi and Gephyrocapsa oceanica1,2 , 1982 .

[31]  S. Brassell,et al.  Long-chain alkenones and alkyl alkenoates and the fossil coccolith record of marine sediments , 1990 .

[32]  P. Westbroek,et al.  COCCOLITH‐ASSOCIATED POLYSACCHARIDES FROM CELLS OF EMILIANIA HUXLEYI (HAPTOPHYCEAE) 1 , 1987 .

[33]  B. Wilkinson,et al.  Sedimentary carbonate record of calcium-magnesium cycling , 1989 .

[34]  W. Balch,et al.  Biological and optical properties of mesoscale coccolithophore blooms in the Gulf of Maine , 1991 .

[35]  E. de Jong,et al.  Biocalcification by the marine alga Emiliania huxleyi (Lohmann) Kamptner. , 1979, European journal of biochemistry.

[36]  Laurel A Muehlhausen,et al.  Further evaluation of long-chain alkenones as indicators of paleoceanographic conditions , 1988 .

[37]  P. Boyd,et al.  Production Of Organic And Inorganic Carbon Within A Large-Scale Coccolithophore Bloom In The Northeast Atlantic-Ocean , 1993 .

[38]  E. de Jong,et al.  The role in CaCO3 crystallization of an acid Ca2+-binding polysaccharide associated with coccoliths of Emiliania huxleyi. , 1982, European journal of biochemistry.

[39]  W. Balch,et al.  From the Ocean to Cells: Coccolithophore Optics and Biogeochemistry , 1991 .

[40]  D. Sanders,et al.  Depletion of cytosolic free calcium induced by photosynthesis , 1987, Nature.

[41]  G. Eglinton,et al.  Molecular stratigraphy: a new tool for climatic assessment , 1986, Nature.

[42]  E. Paasche A tracer study of the inorganic carbon uptake during coccolith formation and photosynthesis in the coccolithophorid Coccolithus huxleyi , 1964 .

[43]  G. Eglinton,et al.  Novel unsaturated straight-chain C37C39 methyl and ethyl ketones in marine sediments and a coccolithophore Emiliania huxleyi , 1980 .

[44]  D. Klaveness Coccolithus huxleyi (Lohm.) Kamptn II. The flagellate cell, aberrant cell types, vegetative propagation and life cycles , 1972 .

[45]  R. Brereton,et al.  Palaeoclimatic signals recognized by chemometric treatment of molecular stratigraphic data , 1986 .

[46]  M. D. Keller,et al.  Dimethylsulfide in a large-scale coccolithophore bloom in the Gulf of Maine , 1993 .

[47]  J. Hayes,et al.  A carbon isotope record of CO2 levels during the late Quaternary , 1990, Nature.

[48]  M. S. Finch,et al.  A biogeochemical study of the coccolithophore, Emiliania huxleyi, in the North Atlantic , 1993 .

[49]  J. Farrington,et al.  Use of the alkenone unsaturation ratio U37k to determine past sea surface temperatures: core-top SST calibrations and methodology considerations , 1991 .

[50]  S. Brassell Applications of Biomarkers for Delineating Marine Paleoclimatic Fluctuations during the Pleistocene , 1993 .

[51]  C. Brown,et al.  Coccolithophorid blooms in the global ocean , 1994 .

[52]  P. Westbroek,et al.  ROLE OF THE LIGHT‐DARK CYCLE AND MEDIUM COMPOSITION ON THE PRODUCTION OF COCCOLITHS BY EMILIANIA HUXLEYI (HAPTOPHYCEAE) 1 , 1991 .

[53]  D. L. Aksnes,et al.  Silicate as regulating nutrient in phytoplankton competition , 1992 .

[54]  J. D. Hays,et al.  The Last Interglacial Ocean , 1984, Quaternary Research.

[55]  C. Sikes,et al.  Functions of coccolith formation1 , 1982 .

[56]  G. Eglinton,et al.  Early diagenesis of organic compounds in deep sea sediments , 1991 .

[57]  B. Molfino,et al.  Global synchroneity of late Quaternary coccolith datum levels Validation by oxygen isotopes , 1977 .

[58]  M. S. Finch,et al.  The impact of a coccolithophore bloom on oceanic carbon uptake in the northeast Atlantic during summer 1991 , 1994 .

[59]  E. Kuenzler,et al.  PHOSPHATASES OF MARINE ALGAE , 1965 .

[60]  S. Brassell,et al.  22. MOLECULAR STRATIGRAPHIC STUDY OF SEDIMENTS FROM HOLES 658A AND 660A, LEG 1081 , 1989 .

[61]  J. Kamerling,et al.  Structural studies of the methylated, acidic polysaccharide associated with coccoliths of Emiliania huxleyi (Lohmann) Kamptner , 1981 .

[62]  F. A. Varkevisser,et al.  Molar mass determination of the polysaccharide associated with coccoliths of emiliania huxleyi , 1986 .

[63]  Biogenic sulfur in the environment , 1989 .

[64]  G. Bratbak,et al.  Viral mortality of the marine alga Emiliania huxleyi (Haptophyceae) and termination of algal blooms , 1993 .

[65]  G. Eglinton,et al.  35. A MOLECULAR STRATIGRAPHIC STUDY OF PERU MARGIN SEDIMENTS, HOLE 686B, LEG 112 1 , 1990 .

[66]  J. Young,et al.  Genotypic variation in the coccolithophorid speciesEmiliania huxleyi , 1991 .

[67]  S. Wakeham,et al.  Variations in the distributions and isotopic composition of alkenones in Black Sea particles and sediments , 1992 .

[68]  K. Chave Carbonates: Association with Organic Matter in Surface Seawater , 1965, Science.

[69]  M. D. Keller,et al.  Dimethylsulfide production in marine phytoplankton. , 1989 .

[70]  P. Holligan Do Marine Phytoplankton Influence Global Climate , 1992 .

[71]  M. Sarnthein,et al.  Molecular record of secular sea surface temperature changes on 100-year timescales for glacial terminations I, II and IV , 1992, Nature.

[72]  G. Eglinton,et al.  Alkenone and alkenoate distributions within the euphotic zone of the eastern North Atlantic: correlation with production temperature , 1993 .

[73]  W. Daems,et al.  Immunochemical localization of a polysaccharide from biomineral structures (coccoliths) of , 1986 .

[74]  M. Veldhuis,et al.  Growth and Fluorescence Characteristics of Ultraplankton on a North South Transect in the Eastern North-Atlantic , 1993 .

[75]  A. Mcintyre,et al.  Seasonal distribution of modern coccolithophores in the western North Atlantic Ocean , 1979 .

[76]  F. Prahl,et al.  Post-depositional stability of long-chain alkenones under contrasting redox conditions , 1989, Nature.

[77]  G. Cadée,et al.  Phaeocystis blooms and eutrophication of the continental coastal zones of the North Sea , 1992 .