High-resolution topomapping of candidate MER landing sites with Mars Orbiter Camera narrow-angle images

[1] We analyzed narrow-angle Mars Orbiter Camera (MOC-NA) images to produce high-resolution digital elevation models (DEMs) in order to provide topographic and slope information needed to assess the safety of candidate landing sites for the Mars Exploration Rovers (MER) and to assess the accuracy of our results by a variety of tests. The mapping techniques developed also support geoscientific studies and can be used with all present and planned Mars-orbiting scanner cameras. Photogrammetric analysis of MOC stereopairs yields DEMs with 3-pixel (typically 10 m) horizontal resolution, vertical precision consistent with ∼0.22 pixel matching errors (typically a few meters), and slope errors of 1–3°. These DEMs are controlled to the Mars Orbiter Laser Altimeter (MOLA) global data set and consistent with it at the limits of resolution. Photoclinometry yields DEMs with single-pixel (typically ∼3 m) horizontal resolution and submeter vertical precision. Where the surface albedo is uniform, the dominant error is 10–20% relative uncertainty in the amplitude of topography and slopes after “calibrating” photoclinometry against a stereo DEM to account for the influence of atmospheric haze. We mapped portions of seven candidate MER sites and the Mars Pathfinder site. Safety of the final four sites (Elysium, Gusev, Isidis, and Meridiani) was assessed by mission engineers by simulating landings on our DEMs of “hazard units” mapped in the sites, with results weighted by the probability of landing on those units; summary slope statistics show that most hazard units are smooth, with only small areas of etched terrain in Gusev crater posing a slope hazard.

[1]  H. Heywood The Physics of Blown Sand and Desert Dunes , 1941, Nature.

[2]  R. Bagnold,et al.  The Physics of Blown Sand and Desert Dunes , 1941 .

[3]  M. Minnaert The reciprocity principle in lunar photometry , 1941 .

[4]  R. L. Duncombe,et al.  Report of the IAU Working Group on Cartographic Coordinates and Rotational Elements of the Planets and Satellites , 1980 .

[5]  B. Hapke Bidirectional reflectance spectroscopy: 1. Theory , 1981 .

[6]  B. Hapke Bidirectional reflectance spectroscopy , 1984 .

[7]  B. Hapke Bidirectional reflectance spectroscopy: 4. The extinction coefficient and the opposition effect , 1986 .

[8]  Christian Heipke,et al.  The Camera Experiments HRSC and WAOSS on the Mars 94/96 Missions , 1990 .

[9]  A. McEwen Photometric functions for photoclinometry and other applications , 1991 .

[10]  D. Turcotte Fractals and Chaos in Geology and Geophysics , 1992 .

[11]  David E. Smith,et al.  The Mars Observer laser altimeter investigation , 1992 .

[12]  M. Malin,et al.  Mars Observer camera , 1992 .

[13]  High-Resolution Topographic Map of the Ares Tiu Landing Site from Viking Orbiter Data , 1995 .

[14]  A. C. Cook,et al.  Clementine imagery: selenographic coverage for cartographic and scientific use , 1996 .

[15]  Kenneth L. Tanaka Sedimentary history and mass flow structures of Chryse and Acidalia Planitiae, Mars , 1997 .

[16]  Production of Digital Image Models Using the ISIS System , 1997 .

[17]  Karl J. Becker,et al.  ISIS - A Software Architecture for Processing Planetary Images , 1997 .

[18]  M E Davies,et al.  Early views of the martian surface from the Mars Orbiter Camera of Mars Global Surveyor. , 1998, Science.

[19]  Bruce A. Campbell,et al.  Shadows on a Planetary Surface and Implications for Photometric Roughness , 1998 .

[20]  David E. Smith,et al.  The global topography of Mars and implications for surface evolution. , 1999, Science.

[21]  Elpitha Howington-Kraus,et al.  A DATABASE OF VIKING ORBITER IMAGE COVERAGE OF MARS FOR CARTOGRAPHIC AND SCIENTIFIC USE , 1999 .

[22]  Trent M. Hare,et al.  Digital photogrammetric analysis of the IMP camera images: Mapping the Mars Pathfinder landing site in three dimensions , 1999 .

[23]  Harry Y. McSween,et al.  The Thermal Emission Imaging System (THEMIS) Instrument for the Mars 2001 Orbiter , 1999 .

[24]  R. Clark,et al.  Detection of crystalline hematite mineralization on Mars by the Thermal Emission Spectrometer: Evide , 2000 .

[25]  Vertical Roughness of the Polar Regions of Mars from Mars Orbiter Laser Altimeter Pulse-Width Measurements , 2000 .

[26]  R. Kirk,et al.  Photometric Modeling for Planetary Cartography , 2000 .

[27]  Randolph L. Kirk,et al.  Recent planetary topographic mapping at the USGS, Flagstaff: Moon, Mars, Venus, and beyond , 2000 .

[28]  N. Bridges,et al.  Mars Pathfinder landing site: Evidence for a change in wind regime from lander and orbiter data , 2000 .

[29]  David E. Smith,et al.  Mars Orbiter Laser Altimeter: Experiment summary after the first year of global mapping of Mars , 2001 .

[30]  T. Farr,et al.  The roughness of natural terrain: A planetary and remote sensing perspective , 2001 .

[31]  M. A. Caplinger,et al.  Mars Orbiter Camera geodesy campaign , 2001 .

[32]  Validation of the USGS sensor model for topographic mapping of Venus using Magellan radar stereoimagery , 2001 .

[33]  M. Malin,et al.  Mars Global Surveyor Mars Orbiter Camera: Interplanetary cruise through primary mission , 2001 .

[34]  David E. Smith,et al.  Crossover analysis of Mars Orbiter Laser Altimeter data , 2001 .

[35]  R. Kirk,et al.  Photometry of the Martian Atmosphere: An Improved Practical Model for Cartography and Photoclinometry , 2001 .

[36]  R. Kirk,et al.  USGS HIGH-RESOLUTION TOPOMAPPING OF MARS WITH MARS ORBITER CAMERA NARROW-ANGLE IMAGES , 2002 .

[37]  Virginia C. Gulick,et al.  HiRISE: The High Resolution Imaging Science Experiment for Mars Reconnaissance Orbiter , 2002 .

[38]  A. McEwen,et al.  Repeated Aqueous Flooding from the Cerberus Fossae: Evidence for Very Recently Extant, Deep Groundwater on Mars , 2002 .

[39]  P. Thomas,et al.  Report of the IAU/IAG Working Group on Cartographic Coordinates and Rotational Elements of the Planets and Satellites: 2000 , 2002 .

[40]  Anton B. Ivanov,et al.  Analysis of Mars Orbiter Camera Stereo Pairs , 2002 .

[41]  Mars exploration rover landing site hectometer slopes , 2002 .

[42]  R. Kirk,et al.  USGS and DLR topographic mapping of Comet Borrelly , 2002 .

[43]  R. Kirk,et al.  Mars Geodesy/Cartography Working Group recommendations on Mars cartographic constants and coordinate systems , 2002 .

[44]  D. M. Nelson,et al.  Eos Chasma, Mars: Regional setting for a potential landing site for astrobiology , 2003 .

[45]  L. Crumpler,et al.  Geology and MER target site characteristics along the southern rim of Isidis Planitia, Mars , 2003 .

[46]  Kenneth L. Tanaka,et al.  Exploring Gusev Crater with spirit: Review of science objectives and testable hypotheses , 2003 .

[47]  P. Christensen,et al.  THEMIS characterization of the MER Gusev crater landing site , 2003 .

[48]  S. V. Gasselt,et al.  Continual geological activity in Athabasca Valles, Mars , 2003 .

[49]  J. Grant,et al.  Geology of the Melas Chasma landing site for the Mars Exploration Rover mission , 2003 .

[50]  Randolph L. Kirk,et al.  Meter-Scale 3-D Models of the Martian Surface from Combining MOC and MOLA Data , 2003 .

[51]  Anton B. Ivanov Ten-Meter Scale Topography and Roughness of Mars Exploration Rovers Landing Sites and Martian Polar Regions , 2003 .

[52]  Randolph L. Kirk,et al.  Meter‐scale slopes of candidate MER landing sites from point photoclinometry , 2003 .

[53]  R. Greeley,et al.  Wind‐related features in Gusev crater, Mars , 2003 .

[54]  A. F. C. Haldemann,et al.  Analysis of MOLA data for the Mars Exploration Rover landing sites , 2003 .

[55]  M. Zuber,et al.  Mars Orbiter Laser Altimeter pulse width measurements and footprint‐scale roughness , 2003 .

[56]  Mark I. Richardson,et al.  Analysis of atmospheric mesoscale models for entry, descent, and landing , 2003 .

[57]  Kenneth L. Tanaka,et al.  Geology of the MER 2003 “Elysium” candidate landing site in southeastern Utopia Planitia, Mars , 2003 .

[58]  Scot Rafkin,et al.  Meteorological predictions for 2003 Mars Exploration Rover high‐priority landing sites , 2003 .

[59]  N. Bridges,et al.  Selection of the Mars Exploration Rover landing sites , 2003 .

[60]  High-Resolution Topomapping of Candidate MER Landing Sites with MOC: New Results and Error Analyses , 2003 .

[61]  W. Calvin,et al.  Hydration state of the Martian coarse‐grained hematite exposures: Implications for their origin and evolution , 2004 .