Robust and Computationally Efficient Navigation in Domestic Environments

Presented in this paper is a complete system for robust autonomous navigation in cluttered and dynamic environments. It consists of computationally efficient approaches to the problems of simultaneous localization and mapping, path planning, and motion control, all based on a memory-efficient environment representation. These components have been implemented and integrated with additional components for human-robot interaction and object manipulation on a mobile manipulation platform for service robot applications. The resulting system performed very successfully in the 2008 RoboCup@Home competition.

[1]  Thomas Wisspeintner,et al.  The VolksBot Concept – Rapid Prototyping for real-life Applications in Mobile Robotics (Das VolksBot Konzept – Ein Baukastensystem für anwendungsnahes Rapid-Prototyping mobiler Roboter) , 2005, it Inf. Technol..

[2]  Wolfram Burgard,et al.  Online constraint network optimization for efficient maximum likelihood map learning , 2008, 2008 IEEE International Conference on Robotics and Automation.

[3]  Wolfram Burgard,et al.  Improved Techniques for Grid Mapping With Rao-Blackwellized Particle Filters , 2007, IEEE Transactions on Robotics.

[4]  Joachim Hertzberg,et al.  Benchmarking urban six‐degree‐of‐freedom simultaneous localization and mapping , 2008, J. Field Robotics.

[5]  Sunil Arya,et al.  ANN: library for approximate nearest neighbor searching , 1998 .

[6]  Nils J. Nilsson,et al.  A Formal Basis for the Heuristic Determination of Minimum Cost Paths , 1968, IEEE Trans. Syst. Sci. Cybern..

[7]  Martin Haegele,et al.  From Robots to Robot Assistants , 2001 .

[8]  Robert B. Fisher,et al.  A Comparison of Four Algorithms for Estimating 3-D Rigid Transformations , 1995, BMVC.

[9]  Marc Levoy,et al.  Efficient variants of the ICP algorithm , 2001, Proceedings Third International Conference on 3-D Digital Imaging and Modeling.

[10]  Joachim Hertzberg,et al.  Globally consistent 3D mapping with scan matching , 2008, Robotics Auton. Syst..

[11]  Maria Letizia Corradini,et al.  Switching linear path following for bounded curvature car-like vehicles , 2004 .

[12]  Giovanni Indiveri Kinematic time-invariant control of a 2D nonholonomic vehicle , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[13]  Joelle Pineau,et al.  Pearl: A Mobile Robotic Assistant for the Elderly , 2002 .

[14]  Joachim Hertzberg,et al.  6D SLAM—3D mapping outdoor environments , 2007, J. Field Robotics.

[15]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  Hugh F. Durrant-Whyte,et al.  Simultaneous Localization, Mapping and Moving Object Tracking , 2007, Int. J. Robotics Res..

[17]  Steven Fortune,et al.  A sweepline algorithm for Voronoi diagrams , 1986, SCG '86.

[18]  Hans P. Moravec Sensor Fusion in Certainty Grids for Mobile Robots , 1988, AI Mag..

[19]  Roland Siegwart,et al.  Robox at Expo.02: A large-scale installation of personal robots , 2003, Robotics Auton. Syst..

[20]  Christopher Lörken,et al.  Introducing Affordances into Robot Task Execution , 2007 .

[21]  Dirk Holz,et al.  Continuous 3D sensing for navigation and SLAM in cluttered and dynamic environments , 2008, 2008 11th International Conference on Information Fusion.

[22]  Ronald L. Graham,et al.  An Efficient Algorithm for Determining the Convex Hull of a Finite Planar Set , 1972, Inf. Process. Lett..

[23]  Joachim Hertzberg,et al.  Evolving interface design for robot search tasks: Research Articles , 2007 .

[24]  Ben J. A. Kröse,et al.  From images to rooms , 2007, Robotics Auton. Syst..

[25]  Rafael Castro-Linares,et al.  Trajectory tracking for non-holonomic cars: A linear approach to controlled leader-follower formation , 2010, 49th IEEE Conference on Decision and Control (CDC).