A Class of Solvable Stopping Games

We consider a class of Dynkin games in the case where the underlying process evolves according to a one-dimensional but otherwise general diffusion. We establish general conditions under which both the value and the saddle point equilibrium exist and under which the exercise boundaries characterizing the saddle point strategy can be explicitly characterized in terms of a pair of standard first order necessary conditions for optimality. We also analyze those cases where an extremal pair of boundaries exists and investigate the overall impact of increased volatility on the equilibrium stopping strategies and their values.

[1]  Erik Ekstrom,et al.  On the value of optimal stopping games , 2006 .

[2]  Luis H. R. Alvarez,et al.  Reward functionals, salvage values, and optimal stopping , 2001, Math. Methods Oper. Res..

[3]  Luis H. R. Alvarez,et al.  Stochastic Forest Stand Value and Optimal Timber Harvesting , 2003, SIAM J. Control. Optim..

[4]  Frederik Boetius,et al.  Bounded Variation Singular Stochastic Control and Dynkin Game , 2005, SIAM J. Control. Optim..

[5]  Michael I. Taksar,et al.  Dynkin Games via Dirichlet Forms and Singular Control of One-Dimensional Diffusions , 2002, SIAM J. Control. Optim..

[6]  A. Bensoussan,et al.  Nonlinear variational inequalities and differential games with stopping times , 1974 .

[7]  Erik Ekström,et al.  Properties of game options , 2006, Math. Methods Oper. Res..

[8]  Nicolas Vieille,et al.  Continuous-Time Dynkin Games with Mixed Strategies , 2002, SIAM J. Control. Optim..

[9]  Luis H. R. Alvarez,et al.  A Class of Solvable Impulse Control Problems , 2004 .

[10]  S. Karlin,et al.  A second course in stochastic processes , 1981 .

[11]  Rida Laraki,et al.  The Value of Zero-Sum Stopping Games in Continuous Time , 2005, SIAM J. Control. Optim..

[12]  Savas Dayanik,et al.  On the optimal stopping problem for one-dimensional diffusions , 2003 .

[13]  Goran Peskir,et al.  Optimal Stopping Games for Markov Processes , 2008, SIAM J. Control. Optim..

[14]  Andreas E. Kyprianou,et al.  Some calculations for Israeli options , 2004, Finance Stochastics.

[15]  E. B. Dynkin,et al.  Game variant of a problem on optimal stopping , 1969 .

[16]  Avner Friedman,et al.  Regularity theorems for variational inequalities in unbounded domains and applications to stopping time problems , 1973 .

[17]  Rida Laraki,et al.  Continuous-time games of timing , 2005, J. Econ. Theory.

[18]  A. Friedman Stochastic games and variational inequalities , 1973 .

[19]  Paavo Salminen,et al.  Optimal Stopping of One‐Dimensional Diffusions , 1985 .

[20]  Avner Friedman,et al.  Nonzero-sum stochastic differential games with stopping times and free boundary problems , 1977 .