Chemometrics applied to unravel multicomponent processes and mixtures: Revisiting latest trends in multivariate resolution

Abstract Progress in the analysis of multicomponent processes and mixtures relies on the combination of sophisticated instrumental techniques and suitable data analysis tools focused on the interpretation of the multivariate responses obtained. Despite the differences in compositional variation, complexity and origin, the raw measurements recorded in a multicomponent chemical system can be very often described with a simple model consisting of the composition-weighted sum of the signals of their pure compounds. Multivariate resolution methods have been the tools designed to unravel this pure compound information from the non-selective mixed original experimental output. The evolution of these chemometric approaches through the improvement of exploratory tools, the adaptation to work with complex data structures, the ability to introduce chemical and mathematical information in the algorithms and the better quality assessment of the results obtained is revisited. The active research on these chemometric area has allowed the successful application of these methodologies to chemical problems as complex and diverse as the interpretation of protein folding processes or the resolution of spectroscopic images.

[1]  Bruce R. Kowalski,et al.  Generalized rank annihilation factor analysis , 1986 .

[2]  H. Gampp,et al.  Calculation of equilibrium constants from multiwavelength spectroscopic data-IV Model-free least-squares refinement by use of evolving factor analysis. , 1986, Talanta.

[3]  Yukihiro Ozaki,et al.  SELF-MODELING CURVE RESOLUTION (SMCR): PRINCIPLES, TECHNIQUES, AND APPLICATIONS , 2002 .

[4]  E. Bezemer,et al.  Study of the hydrolysis of a sulfonylurea herbicide using liquid chromatography with diode array detection and mass spectrometry by three-way multivariate curve resolution-alternating least squares. , 2001, Analytical chemistry.

[5]  Age K. Smilde,et al.  Multicomponent Determination of Chlorinated Hydrocarbons Using a Reaction-Based Chemical Sensor. 3. Medium-Rank Second-Order Calibration with Restricted Tucker Models , 1994 .

[6]  H. Gampp,et al.  Quantification of a known component in an unknown mixture , 1987 .

[7]  Age K. Smilde,et al.  Estimating reaction rate constants from a two‐step reaction: a comparison between two‐way and three‐way methods , 2000 .

[8]  Y Liang,et al.  Resolution of two-way data: theoretical background and practical problem-solving Part 1: Theoretical background and methodology , 2001, Fresenius' journal of analytical chemistry.

[9]  E. A. Sylvestre,et al.  Curve Resolution Using a Postulated Chemical Reaction , 1974 .

[10]  J. J. Andrew,et al.  Rapid Analysis of Raman Image Data Using Two-Way Multivariate Curve Resolution , 1998 .

[11]  H. R. Keller,et al.  Peak purity control in liquid chromatography with photodiode-array detection by a fixed size moving window evolving factor analysis , 1991 .

[12]  R. Bro,et al.  PARAFAC2—Part I. A direct fitting algorithm for the PARAFAC2 model , 1999 .

[13]  B. Kowalski,et al.  Tensorial resolution: A direct trilinear decomposition , 1990 .

[14]  Marcel Maeder,et al.  Exhaustive evolving factor analysis (E‐EFA) , 2001 .

[15]  Yukihiro Ozaki,et al.  Resolution of two‐way data from spectroscopic monitoring of reaction or process systems by parallel vector analysis (PVA) and window factor analysis (WFA): inspection of the effect of mass balance, methods and simulations , 2003 .

[16]  G. Meinrath,et al.  Computer-intensive methods for uncertainty estimation in complex situations , 2000 .

[17]  Hein Putter,et al.  The bootstrap: a tutorial , 2000 .

[18]  B. Kowalski,et al.  Theory of medium‐rank second‐order calibration with restricted‐Tucker models , 1994 .

[19]  Romà Tauler,et al.  Quantitation of Mixtures of Diprotic Organic Acids by FT-IR Flow Titrations and Multivariate Curve Resolution , 2002 .

[20]  Philip K. Hopke,et al.  Sources of fine particle composition in the northeastern US , 2001 .

[21]  J. Hamilton,et al.  Mixture analysis using factor analysis. II: Self‐modeling curve resolution , 1990 .

[22]  H. Gampp,et al.  Calculation of equilibrium constants from multiwavelength spectroscopic data-III Model-free analysis of spectrophotometric and ESR titrations. , 1985, Talanta.

[23]  R. Henry,et al.  Extension of self-modeling curve resolution to mixtures of more than three components: Part 1. Finding the basic feasible region , 1990 .

[24]  M. Maeder Evolving factor analysis for the resolution of overlapping chromatographic peaks , 1987 .

[25]  Romà Tauler,et al.  Principal component analysis applied to the study of successive complex formation data in Cu(II)–ethanolamine systems , 2005 .

[26]  W. Windig,et al.  Multivariate Image Analysis of Magnetic Resonance Images with the Direct Exponential Curve Resolution Algorithm (DECRA). , 1998, Journal of magnetic resonance.

[27]  Rasmus Bro,et al.  Calibration methods for complex second-order data , 1999 .

[28]  Andrew G. Glen,et al.  APPL , 2001 .

[29]  Yi-Zeng Liang,et al.  Subwindow factor analysis , 1999 .

[30]  S. D. Jong,et al.  Handbook of Chemometrics and Qualimetrics , 1998 .

[31]  Marcel Maeder,et al.  Target transform fitting: a new method for the non‐linear fitting of multivariate data with separable parameters , 2001 .

[32]  M. Esteban,et al.  Differential pulse voltammetric study of the complexation of Cd(II) by the phytochelatin (γ-GluCys)2Gly assisted by multivariate curve resolution , 2002 .

[33]  J. Leeuw,et al.  Principal component analysis of three-mode data by means of alternating least squares algorithms , 1980 .

[34]  P. Hopke,et al.  Application of modified alternating least squares regression to spectroscopic image analysis , 2003 .

[35]  Rasmus Bro,et al.  Enzymatic browning of vegetables. Calibration and analysis of variance by multiway methods , 1996 .

[36]  Remo Guidieri Res , 1995, RES: Anthropology and Aesthetics.

[37]  E. R. Malinowski,et al.  Rank Annihilation Factor Analysis of Unresolved LC Peaks , 1983 .

[38]  Dominique Bonvin,et al.  On the Rank Deficiency and Rank Augmentation of the Spectral Measurement Matrix , 1996 .

[39]  J. Chang,et al.  Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .

[40]  M. Maeder,et al.  Resolving factor analysis. , 2001, Analytical chemistry.

[41]  R. Tauler,et al.  Three-way data analysis applied to multispectroscopic monitoring of protein folding , 2001 .

[42]  W. Windig,et al.  Interactive self-modeling mixture analysis , 1991 .

[43]  Rasmus Bro,et al.  Quantifying catecholamines using multi-way kinetic modelling , 2003 .

[44]  Bruce R. Kowalski,et al.  An extension of the multivariate component-resolution method to three components , 1985 .

[45]  Romà Tauler,et al.  Second-order multivariate curve resolution applied to rank-deficient data obtained from acid-base spectrophotometric titrations of mixtures of nucleic bases , 1997 .

[46]  Paul J. Gemperline,et al.  A priori estimates of the elution profiles of the pure components in overlapped liquid chromatography peaks using target factor analysis , 1984, J. Chem. Inf. Comput. Sci..

[47]  R. Tauler,et al.  Combining hard- and soft-modelling to solve kinetic problems , 2000 .

[48]  R. Tauler Multivariate curve resolution applied to second order data , 1995 .

[49]  Romà Tauler,et al.  Multivariate resolution of rank‐deficient spectrophotometric data from first‐order kinetic decomposition reactions , 1998 .

[50]  Enric Casassas,et al.  Application of principal component analysis to the study of multiple equilibria systems : Study of copper(II)/salicylate/mono-, di- and triethanolamine systems , 1989 .

[51]  Rasmus Bro,et al.  Recent developments in CANDECOMP/PARAFAC algorithms: a critical review , 2003 .

[52]  R. Tauler,et al.  Multivariate curve resolution: a possible tool in the detection of intermediate structures in protein folding. , 1998, Biophysical journal.

[53]  R. Tauler,et al.  Chapter 16 Interpretation of environmental data using chemometrics , 2000 .

[54]  R. Tauler Calculation of maximum and minimum band boundaries of feasible solutions for species profiles obtained by multivariate curve resolution , 2001 .

[55]  Sarah C. Rutan,et al.  Multivariate curve resolution with non-linear fitting of kinetic profiles , 2001 .

[56]  B. M. Fulk MATH , 1992 .

[57]  D. L. Massart,et al.  Purity assessment and resolution of tetracycline hydrochloride samples analysed using high-performance liquid chromatography with diode array detection , 1999 .

[58]  D. Massart,et al.  Comparison between the direct trilinear decomposition and the multivariate curve resolution-alternating least squares methods for the resolution of three-way data sets , 1998 .

[59]  Romà Tauler,et al.  Strategies for solving matrix effects in the analysis of triphenyltin in sea-water samples by three-way multivariate curve resolution , 2000 .

[60]  P. Gemperline,et al.  Computation of the range of feasible solutions in self-modeling curve resolution algorithms. , 1999, Analytical chemistry.

[61]  R. Tauler,et al.  Multivariate curve resolution and trilinear decomposition methods in the analysis of stopped-flow kinetic data for binary amino Acid mixtures. , 1997, Analytical chemistry.

[62]  Edmund R. Malinowski,et al.  Automatic window factor analysis—A more efficient method for determining concentration profiles from evolutionary spectra , 1996 .

[63]  K. Booksh,et al.  Excitation-emission matrix fluorescence based determination of carbamate pesticides and polycyclic aromatic hydrocarbons , 1999 .

[64]  Romà Tauler,et al.  Application of a novel resolution approach combining soft- and hard-modelling features to investigate temperature-dependent kinetic processes , 2001 .

[65]  R. Tauler,et al.  Multivariate curve resolution applied to liquid chromatography—diode array detection , 1993 .

[66]  Olav M. Kvalheim,et al.  Eigenstructure tracking analysis for revealing noise pattern and local rank in instrumental profiles: application to transmittance and absorbance IR spectroscopy , 1993 .

[67]  Edmund R. Malinowski,et al.  Factor Analysis in Chemistry , 1980 .

[68]  Romà Tauler,et al.  Application of a combination of hard and soft modeling for equilibrium systems to the quantitative analysis of pH-modulated mixture samples. , 2003, Analytical chemistry.

[69]  Rasmus Bro,et al.  The N-way Toolbox for MATLAB , 2000 .

[70]  R. Tauler,et al.  Application of multivariate curve resolution to voltammetric data. Part 1. Study of Zn(II) complexation with some polyelectrolytes , 1995 .

[71]  Karen H. Haskell,et al.  An algorithm for linear least squares problems with equality and nonnegativity constraints , 1981, Math. Program..

[72]  Romà Tauler,et al.  Assessment of new constraints applied to the alternating least squares method , 1997 .

[73]  Richard J. Hanson,et al.  Algorithm 587: Two Algorithms for the Linearly Constrained Least Squares Problem , 1982, TOMS.

[74]  W. Windig Self-modeling mixture analysis of spectral data with continuous concentration profiles , 1992 .

[75]  R. Bro,et al.  A fast non‐negativity‐constrained least squares algorithm , 1997 .

[76]  M. Maeder,et al.  The resolution of overlapping chromatographic peaks by evolving factor analysis , 1986 .

[77]  R. Bro PARAFAC. Tutorial and applications , 1997 .

[78]  Age K. Smilde,et al.  Calibration and detailed analysis of second-order flow injection analysis data with rank overlap , 2000 .

[79]  R. Tauler,et al.  Multivariate curve resolution of overlapping voltammetric peaks: quantitative analysis of binary and quaternary metal mixtures. , 2002, The Analyst.

[80]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[81]  Paul J. Gemperline,et al.  Target transformation factor analysis with linear inequality constraints applied to spectroscopic-chromatographic data , 1986 .

[82]  Romà Tauler,et al.  Simultaneous analysis of several spectroscopic titrations with self-modelling curve resolution , 1993 .

[83]  P. Wentzell,et al.  Dynamic Monte Carlo self-modeling curve resolution method for multicomponent mixtures , 2002 .

[84]  H. R. Keller,et al.  Heuristic evolving latent projections: resolving two-way multicomponent data. 2. Detection and resolution of minor constituents , 1992 .

[85]  L. Tucker,et al.  Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.

[86]  Rasmus Bro,et al.  Improving the speed of multi-way algorithms:: Part I. Tucker3 , 1998 .

[87]  R. Manne,et al.  Use of convexity for finding pure variables in two-way data from mixtures , 2000 .

[88]  B. Kowalski,et al.  Multivariate curve resolution applied to spectral data from multiple runs of an industrial process , 1993 .

[89]  P. Wentzell,et al.  Three-way analysis of fluorescence spectra of polycyclic aromatic hydrocarbons with quenching by nitromethane. , 2001, Analytical chemistry.

[90]  M. V. Van Benthem,et al.  Application of equality constraints on variables during alternating least squares procedures , 2002 .

[91]  Desire L. Massart,et al.  Multivariate peak purity approaches , 1996 .

[92]  N. Sidiropoulos,et al.  Least squares algorithms under unimodality and non‐negativity constraints , 1998 .

[93]  P. Paatero,et al.  Positive matrix factorization applied to a curve resolution problem , 1998 .

[94]  B. Kowalski,et al.  Review of Chemometrics Applied to Spectroscopy: 1985-95, Part 3 - Multi-way Analysis , 1997 .

[95]  R. Manne,et al.  Resolution of two-way data from hyphenated chromatography by means of elementary matrix transformations , 2000 .

[96]  R. Tauler,et al.  Implementation of a chemical equilibrium constraint in the multivariate curve resolution of voltammograms from systems with successive metal complexes. , 2001, The Analyst.

[97]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[98]  Rasmus Bro,et al.  Jack-knife technique for outlier detection and estimation of standard errors in PARAFAC models , 2003 .

[99]  M. Eberlin,et al.  Multivariate curve resolution applied to MS/MS data obtained from isomeric mixtures , 2001 .

[100]  R. Tauler,et al.  Application of multivariate curve resolution to the voltammetric study of the complexation of fulvic acids with cadmium(II) ion , 2002 .

[101]  Edmund R. Malinowski,et al.  Obtaining the key set of typical vectors by factor analysis and subsequent isolation of component spectra , 1982 .

[102]  H. R. Keller,et al.  Evolving factor analysis in the presence of heteroscedastic noise , 1992 .

[103]  G. Kateman,et al.  Multicomponent self-modelling curve resolution in high-performance liquid chromatography by iterative target transformation analysis , 1985 .

[104]  Edmund R. Malinowski,et al.  Window factor analysis: Theoretical derivation and application to flow injection analysis data , 1992 .

[105]  R. Tauler,et al.  Application of a multivariate curve resolution procedure to the analysis of second-order melting data of synthetic and natural polynucleotides. , 1997, Analytical chemistry.

[106]  Romà Tauler,et al.  Detection and resolution of intermediate species in protein folding processes using fluorescence and circular dichroism spectroscopies and multivariate curve resolution. , 2002, Analytical chemistry.

[107]  E. A. Sylvestre,et al.  Self Modeling Curve Resolution , 1971 .

[108]  Yizeng Liang,et al.  Heuristic evolving latent projections: resolving two-way multicomponent data. 1. Selectivity, latent-projective graph, datascope, local rank, and unique resolution , 1992 .

[109]  P. Hopke Receptor modeling in environmental chemistry , 1985 .

[110]  R. Manne On the resolution problem in hyphenated chromatography , 1995 .

[111]  B. Kowalski,et al.  Selectivity, local rank, three‐way data analysis and ambiguity in multivariate curve resolution , 1995 .

[112]  Nicolaas (Klaas) M. Faber,et al.  Comment on a recently proposed resampling method , 2001 .

[113]  Desire L. Massart,et al.  Application of the needle algorithm for exploratory analysis and resolution of HPLC-DAD data , 1996 .

[114]  R. Tauler,et al.  Multivariate curve resolution: a powerful tool for the analysis of conformational transitions in nucleic acids. , 2002, Nucleic acids research.

[115]  Miquel Esteban,et al.  Multivariate curve resolution with alternating least squares optimisation: a soft-modelling approach to metal complexation studies by voltammetric techniques , 2000 .

[116]  Avraham Lorber,et al.  Analytical figures of merit for tensorial calibration , 1997 .

[117]  Harald Martens,et al.  Restricted Least Squares Estimation of the Spectra and Concentration of Two Unknown Constituents Available in Mixtures , 1982 .

[118]  Age K. Smilde,et al.  Application of curve resolution based methods to kinetic data , 1999 .

[119]  D. Massart,et al.  Orthogonal projection approach applied to peak purity assessment. , 1996, Analytical chemistry.

[120]  Charles L. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.

[121]  E. Karjalainen The spectrum reconstruction problem: use of alternating regression for unexpected spectral components in two-dimensional spectroscopies , 1989 .

[122]  Romà Tauler,et al.  Input Characterization of Sedimentary Organic Contaminants and Molecular Markers in the Northwestern Mediterranean Sea by Exploratory Data Analysis , 1997 .

[123]  Romà Tauler,et al.  Comparison of three‐way resolution methods for non‐trilinear chemical data sets , 2001 .