Hydrogen crystals reduce dissipation in superconducting resonators

We show that the internal quality factors of high impedance superconducting resonators made of granular aluminum can be improved by coating them with micrometric films of solid para-hydrogen molecular crystals. We attribute the average measured $\approx 8\%$ reduction in dissipation to absorption of stray terahertz radiation at the crystal-resonator interface and the subsequent dissipation of its energy in the form of phonons below the pair-breaking gap. Our results prove that, contrary to expectations, replacing the vacuum dielectric atop a superconducting resonator can be beneficial, thanks to the added protection against Cooper pair-braking terahertz radiation. Moreover, at the level of internal quality factors in the $10^5$ range, the hydrogen crystal does not introduce additional losses, which is promising for embedding impurities to couple to superconducting thin-film devices in hybrid quantum architectures.

[1]  P. Bertet,et al.  Single-electron spin resonance detection by microwave photon counting , 2023, Nature.

[2]  S. Girvin,et al.  Real-time quantum error correction beyond break-even , 2022, Nature.

[3]  N. Roch,et al.  Evidence of dual Shapiro steps in a Josephson junction array , 2022, Nature Physics.

[4]  C. K. Andersen,et al.  Realizing repeated quantum error correction in a distance-three surface code , 2021, Nature.

[5]  P. Bertet,et al.  Detecting spins by their fluorescence with a microwave photon counter , 2021, Nature.

[6]  H. Neven,et al.  Resolving catastrophic error bursts from cosmic rays in large arrays of superconducting qubits , 2021, Nature Physics.

[7]  J. Koski,et al.  In situ Tuning of the Electric-Dipole Strength of a Double-Dot Charge Qubit: Charge-Noise Protection and Ultrastrong Coupling , 2021, Physical Review X.

[8]  Kavli Institute for Cosmological Physics,et al.  Correlated charge noise and relaxation errors in superconducting qubits , 2020, Nature.

[9]  D. Patterson,et al.  Ultralong Spin-Coherence Times for Rubidium Atoms in Solid Parahydrogen via Dynamical Decoupling. , 2020, Physical review letters.

[10]  Miguel Ángel Martínez,et al.  Reducing the impact of radioactivity on quantum circuits in a deep-underground facility , 2020, Nature Communications.

[11]  H. Kral polarizability , 2020, Catalysis from A to Z.

[12]  Akshunna S. Dogra,et al.  Impact of ionizing radiation on superconducting qubit coherence , 2020, Nature.

[13]  John C. Platt,et al.  Quantum supremacy using a programmable superconducting processor , 2019, Nature.

[14]  W. Wernsdorfer,et al.  Phonon traps reduce the quasiparticle density in superconducting circuits , 2019, Applied Physics Letters.

[15]  A. Benoit,et al.  Electrodynamics of granular aluminum from superconductor to insulator: Observation of collective superconducting modes , 2019, Physical Review B.

[16]  I. Pop,et al.  Interplay Between Kinetic Inductance, Nonlinearity, and Quasiparticle Dynamics in Granular Aluminum Microwave Kinetic Inductance Detectors , 2018, Physical Review Applied.

[17]  I. Pop,et al.  Loss Mechanisms and Quasiparticle Dynamics in Superconducting Microwave Resonators Made of Thin-Film Granular Aluminum. , 2018, Physical review letters.

[18]  C. K. Andersen,et al.  Coherent microwave photon mediated coupling between a semiconductor and a superconductor qubit , 2018 .

[19]  Luke D. Burkhart,et al.  Hot Nonequilibrium Quasiparticles in Transmon Qubits. , 2018, Physical review letters.

[20]  W. Wernsdorfer,et al.  Circuit quantum electrodynamics of granular aluminum resonators , 2018, Nature Communications.

[21]  D. O. Krimer,et al.  Ultralong relaxation times in bistable hybrid quantum systems , 2017, Science Advances.

[22]  Enzo Pascale,et al.  The NIKA2 large-field-of-view millimetre continuum camera for the 30 m IRAM telescope , 2017, 1707.00908.

[23]  J. Schmiedmayer,et al.  Solid-state electron spin lifetime limited by phononic vacuum modes , 2017, Nature Materials.

[24]  D. O. Krimer,et al.  Spectral hole burning and its application in microwave photonics , 2016, Nature Photonics.

[25]  W. Arnott,et al.  Longitudinal Spin Relaxation of Optically Pumped Rubidium Atoms in Solid Parahydrogen. , 2016, Physical review letters.

[26]  L. DiCarlo,et al.  High Kinetic Inductance Superconducting Nanowire Resonators for Circuit QED in a Magnetic Field , 2015, 1511.01760.

[27]  S Probst,et al.  Efficient and robust analysis of complex scattering data under noise in microwave resonators. , 2014, The Review of scientific instruments.

[28]  M. Weides,et al.  Sputter deposited aluminium-oxide for superconducting high kinetic inductance circuits , 2014, 1408.4347.

[29]  Tobias Nobauer,et al.  Protecting a spin ensemble against decoherence in the strong-coupling regime of cavity QED , 2014, Nature Physics.

[30]  Markus Rösch,et al.  Development of lumped element kinetic inductance detectors for mm-wave astronomy at the IRAM 30 m telescope , 2014 .

[31]  Kristian Berland,et al.  Exchange functional that tests the robustness of the plasmon description of the van der Waals density functional , 2013, 1309.1756.

[32]  A. Wallraff,et al.  Controlling the dynamic range of a Josephson parametric amplifier , 2013, 1305.6583.

[33]  Antonio Corcoles,et al.  Protecting superconducting qubits from radiation , 2011 .

[34]  Austin G. Fowler,et al.  Towards practical classical processing for the surface code. , 2011, Physical review letters.

[35]  Erik Lucero,et al.  Minimizing quasiparticle generation from stray infrared light in superconducting quantum circuits , 2011 .

[36]  J. Schmiedmayer,et al.  Cavity QED with magnetically coupled collective spin states. , 2011, Physical review letters.

[37]  J Wrachtrup,et al.  Strong coupling of a spin ensemble to a superconducting resonator. , 2010, Physical review letters.

[38]  G. Kurizki,et al.  Reversible state transfer between superconducting qubits and atomic ensembles , 2009, 0902.0881.

[39]  A. Imamoğlu Cavity QED based on collective magnetic dipole coupling: spin ensembles as hybrid two-level systems. , 2008, Physical review letters.

[40]  J. Schmiedmayer,et al.  Strong magnetic coupling of an ultracold gas to a superconducting waveguide cavity. , 2008, Physical review letters.

[41]  P. Zoller,et al.  A coherent all-electrical interface between polar molecules and mesoscopic superconducting resonators , 2006 .

[42]  P. Zoller,et al.  Hybrid quantum processors: molecular ensembles as quantum memory for solid state circuits. , 2006, Physical review letters.

[43]  H. Leduc,et al.  A broadband superconducting detector suitable for use in large arrays , 2003, Nature.

[44]  D. Sánchez-Portal,et al.  The SIESTA method for ab initio order-N materials simulation , 2001, cond-mat/0104182.

[45]  Soler,et al.  Self-consistent order-N density-functional calculations for very large systems. , 1996, Physical review. B, Condensed matter.

[46]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[47]  Y. Imry,et al.  Granular Superconducting Films , 1973 .

[48]  B. Halperin,et al.  Nonlinear Phonon Propagation in Fused Silica below 1 K , 1973 .

[49]  W. Arnold,et al.  Saturation of the ultrasonic absorption in vitreous silica at low temperatures , 1972 .

[50]  B. Younglove Polarizability, Dielectric Constant, Pressure, and Density of Solid Parahydrogen on the Melting Line , 1968 .

[51]  R. W. Cohen,et al.  Superconductivity in Granular Aluminum Films , 1968 .

[52]  Andrew N. Kanagin Design and modeling of a cryogenic system for circuit QED experiments , 2018 .

[53]  T. J. Witt,et al.  New International Electrical Reference Standards Based on the Josephson and Quantum Hall Effects , 1989 .

[54]  D. Hilbert Über die stetige Abbildung einer Linie auf ein Flächenstück , 1935 .