Secure Multi-Party Quantum Private Information Query

Different from the existing quantum key distribution (QKD)-based quantum private query (QPQ) protocols, we propose a secure multi-party quantum private information query protocol utilizing universal blind quantum computation in quantum cloud computing. Due to the blindness and correctness of blind quantum computation, our protocol guarantees the privacy and security for all the clients and the servers. The clients obtain values corresponding to their queries only, and nothing else from the servers, while the servers can not get any information about the queries. In our protocols, the only thing that the clients do is to need the ability to perform single-qubit measurement or to prepare single-qubit states.

[1]  Fuguo Deng,et al.  Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block , 2003, quant-ph/0308173.

[2]  Christoph Simon,et al.  Practical private database queries based on a quantum-key-distribution protocol , 2010, 1002.4360.

[3]  Jian Weng,et al.  A hybrid universal blind quantum computation , 2018, Inf. Sci..

[4]  Andrew M. Childs Secure assisted quantum computation , 2001, Quantum Inf. Comput..

[5]  Seth Lloyd,et al.  Quantum Private Queries: Security Analysis , 2008, IEEE Transactions on Information Theory.

[6]  Robert Raussendorf,et al.  Fault-tolerant quantum computation with high threshold in two dimensions. , 2007, Physical review letters.

[7]  Tian-Yin Wang,et al.  Robust Quantum Private Queries , 2016 .

[8]  Hui Chen,et al.  Flexible quantum private queries based on quantum key distribution. , 2011, Optics express.

[9]  G. Long,et al.  Theoretically efficient high-capacity quantum-key-distribution scheme , 2000, quant-ph/0012056.

[10]  Zhiwei Sun,et al.  Symmetrically private information retrieval based on blind quantum computing , 2015 .

[11]  Bin Liu,et al.  A Generic Construction of Quantum-Oblivious-Key-Transfer-Based Private Query with Ideal Database Security and Zero Failure , 2017, IEEE Transactions on Computers.

[12]  Qiao-Yan Wen,et al.  Quantum private query: A new kind of practical quantum cryptographic protocol , 2019, Science China Physics, Mechanics & Astronomy.

[13]  H. Briegel,et al.  Measurement-based quantum computation , 2009, 0910.1116.

[14]  Peng Xu,et al.  Flexible protocol for quantum private query based on B92 protocol , 2014, Quantum Inf. Process..

[15]  Fang Yu,et al.  Application of Blind Quantum Computation to Two-Party Quantum Computation , 2018 .

[16]  Joseph Fitzsimons,et al.  Private quantum computation: an introduction to blind quantum computing and related protocols , 2016, npj Quantum Information.

[17]  Elham Kashefi,et al.  Measurement-Based and Universal Blind Quantum Computation , 2010, SFM.

[18]  Bin Liu,et al.  QKD-based quantum private query without a failure probability , 2015, 1511.05267.

[19]  Jian Weng,et al.  Single-server blind quantum computation with quantum circuit model , 2018, Quantum Inf. Process..

[20]  Elham Kashefi,et al.  Universal Blind Quantum Computation , 2008, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[21]  Shimon Even,et al.  A protocol for signing contracts , 1983, SIGA.

[22]  Xu Zhou,et al.  Universal half-blind quantum computation , 2017, Ann. des Télécommunications.

[23]  Keisuke Fujii,et al.  Blind topological measurement-based quantum computation , 2011, Nature Communications.

[24]  Gilles Brassard,et al.  Quantum Cryptography , 2005, Encyclopedia of Cryptography and Security.

[25]  G. Paul,et al.  Device Independent Quantum Private Query , 2017, 1701.01087.

[26]  Silvio Micali,et al.  How to play ANY mental game , 1987, STOC.

[27]  Xiubo Chen,et al.  Novel classical post-processing for quantum key distribution-based quantum private query , 2016, Quantum Inf. Process..

[28]  Fei Gao,et al.  Postprocessing of the Oblivious Key in Quantum Private Query , 2014, IEEE Journal of Selected Topics in Quantum Electronics.

[29]  M. V. Panduranga Rao,et al.  Towards communication-efficient quantum oblivious key distribution , 2012, 1208.2501.

[30]  Tingting Song,et al.  Verifiable delegated quantum computation with χ-type entangled states , 2017, Comput. Stand. Interfaces.

[31]  Shibin Zhang,et al.  Quantum Private Query Protocol Based on Two Non-Orthogonal States , 2016, Entropy.

[32]  Oded Goldreich,et al.  A randomized protocol for signing contracts , 1985, CACM.

[33]  Xiu-Bo Chen,et al.  Practical Quantum Private Database Queries Based on Passive Round-Robin Differential Phase-shift Quantum Key Distribution , 2016, Scientific Reports.

[34]  T. Morimae,et al.  Blind quantum computation protocol in which Alice only makes measurements , 2012, 1201.3966.

[35]  Fei Gao,et al.  Private database queries based on counterfactual quantum key distribution , 2013 .

[36]  E. Kashefi,et al.  Unconditionally verifiable blind quantum computation , 2012, 1203.5217.

[37]  Michael O. Rabin,et al.  How To Exchange Secrets with Oblivious Transfer , 2005, IACR Cryptol. ePrint Arch..

[38]  Fei Gao,et al.  Practical quantum private query of blocks based on unbalanced-state Bennett-Brassard-1984 quantum-key-distribution protocol , 2014, Scientific Reports.

[39]  Masahito Hayashi,et al.  Verifiable Measurement-Only Blind Quantum Computing with Stabilizer Testing. , 2015, Physical review letters.