Information and Knowledge in Biology

The second law of thermodynamics accounts for irreversibility of processes in the universe. As a statement about increasing disorder, it also plays a central role in creating order. Structuring is a way of how to increase the rate of dissipation of matter and energy. This is the reason why chemical reactions on Earth have produced a profusion of structures. Chemical structures with particularly high stability, maintained by continual dissipation, are designated, somewhat arbitrarily, as living systems. To preserve stability, organisms are unceasingly performing ontic work, assisted by epistemic work. Biological evolution is a progressing process of knowledge acquisition (cognition) and, correspondingly, of growth of complexity. The acquired knowledge represents epistemic complexity. Biological species are the main “bookkeepers” of acquired knowledge, with individual members of the species functioning as “explorers” of novelty. Science, a human species-specific mode of acquiring knowledge, abounds in metaphors no less than art. In the postgenomic era, the metaphor of information, along with the related metaphor of selfish genes, may need reconsideration and/or complementation. The world of great complexity, which is becoming the focus of studies of contemporary biology, may require – similarly as it is the case of quantum physics – descriptions based on the principle of complementarity. Embodied knowledge, molecular engine, ontic and epistemic work, and triggering may become parts of a new conceptual armory.

[1]  L. Kováč Physics, mind, society: Back and forth , 2007 .

[2]  L. Kováč Life, chemistry and cognition , 2006, EMBO reports.

[3]  Oded Kafri,et al.  Information theory and Thermodynamics , 2006, ArXiv.

[4]  Birger Hjørland,et al.  The concept of information , 2005, Annu. Rev. Inf. Sci. Technol..

[5]  Mark E. Borrello Readers of the Book of Life: Contextualizing Developmental Evolutionary Biology.ByAnton Markoš.Oxford and New York: Oxford University Press. $39.95. x + 245 p; ill.; index. ISBN: 0–19–514948–3. 2002. , 2003 .

[6]  S. Gould The Structure of Evolutionary Theory , 2002 .

[7]  A. Falk Darwinian Dynamics: Evolutionary Transitions in Fitness and Individuality. Richard E. Michod , 2000 .

[8]  John Maynard Smith The Concept of Information in Biology , 2000, Philosophy of Science.

[9]  R. Swenson Spontaneous Order, Autocatakinetic Closure, and the Development of Space‐Time , 2000, Annals of the New York Academy of Sciences.

[10]  T D Schneider,et al.  Measuring molecular information. , 1999, Journal of theoretical biology.

[11]  S. Gould,et al.  Individuality and adaptation across levels of selection: how shall we name and generalize the unit of Darwinism? , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[12]  I. Mysterud Unto others: The evolution and psychology of unselfish behavior , 1999 .

[13]  E. D. Schneider,et al.  Life as a manifestation of the second law of thermodynamics , 1994 .

[14]  Stephen Lloyd,et al.  THE CALCULUS OF INTRICACY , 1990 .

[15]  P. R. Sibbald,et al.  Calculating higher order DNA sequence information measures. , 1989, Journal of theoretical biology.

[16]  S. Lloyd,et al.  Complexity as thermodynamic depth , 1988 .

[17]  P. V. von Hippel,et al.  Selection of DNA binding sites by regulatory proteins. , 1988, Trends in biochemical sciences.

[18]  Hans Kun,et al.  Origin of life and physics: diversified microstructures—inducement to form information-carrying and knowledge-accumulating systems , 1988 .

[19]  G. Simon Behind the Mirror , 1987 .

[20]  Clive Richards,et al.  The Blind Watchmaker , 1987, Bristol Medico-Chirurgical Journal.

[21]  P. V. von Hippel,et al.  Selection of DNA binding sites by regulatory proteins. Statistical-mechanical theory and application to operators and promoters. , 1987, Journal of molecular biology.

[22]  C. Stuart Bio-informational equivalence. , 1985, Journal of theoretical biology.

[23]  N. K. Jerne,et al.  The generative grammar of the immune system. , 1985, Science.

[24]  P. T. Landsberg,et al.  Can entropy and order increase together , 1984 .

[25]  E. Wilson,et al.  Genes, mind, and culture : the coevolutionary process , 1982 .

[26]  G. Lakoff,et al.  Metaphors We Live by , 1982 .

[27]  D. Hofstadter,et al.  Godel, Escher, Bach: An Eternal Golden Braid , 1979 .

[28]  Howard Hunt Pattee,et al.  The complementarity principle in biological and social structures , 1978 .

[29]  R. Lewontin ‘The Selfish Gene’ , 1977, Nature.

[30]  D. Layzer,et al.  Arrow of time , 1975 .

[31]  M. Doyama,et al.  The effect of lattice vacancies on positron annihilation in copper-nickel single crystals , 1971 .

[32]  W. Ehrenberg,et al.  Maxwell's Demon , 1967 .

[33]  T. Kuhn,et al.  The Structure of Scientific Revolutions , 1963 .

[34]  L. Szilard über die Entropieverminderung in einem thermodynamischen System bei Eingriffen intelligenter Wesen , 1929 .

[35]  Kirk T. McDonald,et al.  Maxwell ’ s Demon , 2008 .

[36]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[37]  E. Chaisson Cosmic Evolution: The Rise of Complexity in Nature , 2001 .

[38]  Christoph Endres,et al.  Introduction to Artificial Life , 2000, Künstliche Intell..

[39]  P C Marijuán,et al.  First conference on foundations of information science: from computers and quantum physics to cells, nervous systems, and societies. , 1996, Bio Systems.

[40]  H. P. Yockey,et al.  Information Theory And Molecular Biology , 1992 .

[41]  R. M. Siegel,et al.  Bright Air, Brilliant Fire: On the Matter of the Mind , 1992 .

[42]  C. Emmeche,et al.  From language to nature: The semiotic metaphor in biology , 1991 .

[43]  Harvey S. Leff,et al.  Maxwell's Demon 2 , 1990 .

[44]  Jeffrey S. Wicken,et al.  Evolution, thermodynamics and information , 1987 .

[45]  N. Bohr Atomphysik und menschliche Erkenntnis , 1985 .

[46]  John R. Pierce,et al.  An Introduction to Information Theory , 1980 .

[47]  Lila L. Gatlin,et al.  Information theory and the living system , 1972 .

[48]  E. A. Phillips,et al.  Basic ideas in biology , 1971 .

[49]  M. Tribus Thermostatics and thermodynamics , 1961 .

[50]  A. J. Lotka Elements of mathematical biology , 1956 .

[51]  Edmund Husserl,et al.  Die Krisis der europäischen Wissenschaften und die transzendentale Phänomenologie , 1954 .

[52]  F. Hayek Elementist Going Up. (Book Reviews: The Sensory Order: An Inquiry into the Foundations of Theoretical Psychology) , 1953 .

[53]  J. B. Uexküll,et al.  Streifzüge durch die Umwelten von Tieren und Menschen : ein Bilderbuch unsichtbarer Welten , 1934 .