Amarisolide H and 15-epi-Amarisolide H, Two Diterpenoid Glucosides from Salvia circinnata

[1]  L. Yáñez-Espinosa,et al.  Phylogenetic and Chemical Analyses of the Medicinal Plant Salvia circinnata: an Approach to Understand Metabolomics Differences , 2021, Revista Brasileira de Farmacognosia.

[2]  G. Ceballos,et al.  Antihyperglycemic and Lipid Profile Effects of Salvia amarissima Ortega on Streptozocin-Induced Type 2 Diabetic Mice , 2021, Molecules.

[3]  Moreno-Pérez Fernando,et al.  Neo-clerodane diterpenic influence in the antinociceptive and anti-inflammatory properties of Salvia circinnata Cav. , 2020, Journal of ethnopharmacology.

[4]  R. Mata,et al.  Flavonoids and Terpenoids with PTP-1B Inhibitory Properties from the Infusion of Salvia amarissima Ortega , 2020, Molecules.

[5]  L. Yépez-Mulia,et al.  Antiprotozoal Activity of Secondary Metabolites from Salvia circinata , 2020, Revista Brasileira de Farmacognosia.

[6]  F. Pérez-Vázquez,et al.  NMR and SC-XRD analyses of a solid solution of diastereomers of microphyllane diterpenoids from Salvia hirsuta , 2020 .

[7]  A. Dorazco‐González,et al.  Amarisolide A and pedalitin as bioactive compounds in the antinociceptive effects of Salvia circinata , 2019, Botanical Sciences.

[8]  Á. Alpuche-Solís,et al.  Amarisolide F, an Acylated Diterpenoid Glucoside and Related Terpenoids from Salvia amarissima. , 2018, Journal of natural products.

[9]  Guadalupe Cornejo-Tenorio,et al.  Lamiaceae de México , 2017 .

[10]  Jesús Morales-Jiménez,et al.  neo-Clerodane Diterpenoids from Salvia polystachya Stimulate the Expression of Extracellular Matrix Components in Human Dermal Fibroblasts. , 2017, Journal of natural products.

[11]  R. Bye,et al.  α-Glucosidase Inhibitors from Salvia circinata. , 2017, Journal of natural products.

[12]  M. I. Chávez,et al.  neo-Clerodane Diterpenoids and Other Constituents of Salvia filipes. , 2016, Journal of natural products.

[13]  R. Toscano,et al.  Structural elucidation and evaluation of multidrug-resistance modulatory capability of amarissinins A-C, diterpenes derived from Salvia amarissima. , 2016, Fitoterapia.

[14]  M. García-Peña,et al.  Teotihuacanin, a Diterpene with an Unusual Spiro-10/6 System from Salvia amarissima with Potent Modulatory Activity of Multidrug Resistance in Cancer Cells. , 2015, Organic letters.

[15]  R. Toscano,et al.  5,10-seco-neo-clerodanes and neo-clerodanes from Salvia microphylla. , 2014, Journal of natural products.

[16]  Seung‐Chul Kim,et al.  Medicinal plant complexes of Salvia subgenus Calosphace: an ethnobotanical study of new world sages. , 2013, Journal of ethnopharmacology.

[17]  Martha Martínez-Gordillo,et al.  Géneros de Lamiaceae de México, diversidad y endemismo , 2013 .

[18]  Gabriela Figueroa-González,et al.  Reversal of multidrug resistance by morning glory resin glycosides in human breast cancer cells. , 2012, Journal of natural products.

[19]  J. Kadereit Flowering plants, Dicotyledons : Lamiales (except Acanthaceae including Avicenniaceae) , 2005 .

[20]  T. Nagao,et al.  Antiproliferative constituents in plants 10. Flavones from the leaves of Lantana montevidensis Briq. and consideration of structure-activity relationship. , 2002, Biological & pharmaceutical bulletin.

[21]  J. Cárdenas,et al.  Amarisolide, a neo-clerodane diterpene glycoside from Salvia amarissima☆ , 1996 .

[22]  E. V. Boiko,et al.  Flavonoids of Artemisia argyi , 1990, Chemistry of Natural Compounds.