Information theoretical optimization for optical range sensors.

Most of the known optical range sensors require a large amount of two-dimensional raw data from which the three-dimensional (3D) data are decoded and so are associated with considerable cost. The cost arises from expensive hardware as well as from the time necessary to acquire the images. We will address the question of how one can acquire maximum shape information with a minimum amount of image raw data, in terms of information theory. It is shown that one can greatly reduce the amount of raw data needed by proper optical redundancy reduction. Through these considerations, a 3D sensor is introduced, which needs only a single color (red-green-blue) raw image and still delivers data with only approximately 2-microm longitudinal measurement uncertainty.

[1]  B. Roy Frieden,et al.  Probability, Statistical Optics, And Data Testing , 1982 .

[2]  L. P. Yaroslavsky,et al.  III The Theory of Optimal Methods for Localization of Objects in Pictures , 1993 .

[3]  I. M. Jacobs,et al.  Principles of Communication Engineering , 1965 .

[4]  G. Häusler,et al.  Three-dimensional sensing of rough surfaces by coherence radar. , 1992, Applied optics.

[5]  Amiel Feinstein,et al.  Transmission of Information. , 1962 .

[6]  Gerd Haeusler,et al.  Physical limits of 3D sensing , 1993, Other Conferences.

[7]  Robert J. Woodham,et al.  Photometric method for determining surface orientation from multiple images , 1980 .

[8]  G. Häusler,et al.  Limits of Optical Range Sensors and How to Exploit Them , 1999 .

[9]  G Häusler,et al.  Localization and Registration of Three-Dimensional Objects in Space-Where are the Limits? , 2001, Applied optics.

[10]  M A Neifeld,et al.  Information, resolution, and space-bandwidth product. , 1998, Optics letters.

[11]  Rainer Röhler,et al.  Informationstheorie in der Optik , 1967 .

[12]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[13]  G. Häusler,et al.  Laser triangulation: fundamental uncertainty in distance measurement. , 1994, Applied optics.

[14]  Richard E. Blahut,et al.  Principles and practice of information theory , 1987 .

[15]  Berthold K. P. Horn,et al.  Shape from shading , 1989 .

[16]  R. Gallager Information Theory and Reliable Communication , 1968 .

[17]  Philip Lacovara,et al.  Recent results in imaging lidar , 1997, Defense, Security, and Sensing.

[18]  Andrew J. Viterbi,et al.  Principles of Digital Communication and Coding , 1979 .

[19]  Claude E. Shannon,et al.  A mathematical theory of communication , 1948, MOCO.

[20]  V. Srinivasan,et al.  Automated phase-measuring profilometry of 3-D diffuse objects. , 1984, Applied optics.

[21]  Gerd Häusler,et al.  Physikalische Grenzen der optischen Formerfassung mit Licht , 1997 .

[22]  G Häusler,et al.  Parallel three-dimensional sensing by color-coded triangulation. , 1993, Applied optics.