A Wide Range CMOS Temperature Sensor With Process Variation Compensation for On-Chip Monitoring

A fully integrated temperature sensor along with a process compensator based on a frequency to voltage converter is presented in this paper. The proposed temperature sensor uses the difference between a reference current source and a proportional to absolute temperature current source to bias a differential ring-based current-controlled oscillator (CCO). The subtracted current in the CCO generates a linearized temperature-dependent frequency. To adjust the current sources and increase accuracy of the temperature sensor, a process compensator is added in the temperature sensor by adding switches to the architecture. With one point calibration, the maximum inaccuracy of ten measured samples is <inline-formula> <tex-math notation="LaTeX">$-1.9~^{\circ }\text{C}\sim 1.5~^{\circ }\text{C}$ </tex-math></inline-formula> over a temperature range of −40 °C–100 °C. The total power consumption is <inline-formula> <tex-math notation="LaTeX">$264~\mu \text{W}$ </tex-math></inline-formula> from a 1.5 V supply voltage at 25 °C. The temperature sensor is implemented in a standard 0.18-<inline-formula> <tex-math notation="LaTeX">$\mu \text{m}$ </tex-math></inline-formula> CMOS process with an area of 0.0312 mm<sup>2</sup>.

[1]  J. Sarao,et al.  Current mode building and blocks and their application in ADC , 2001, 2001 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (IEEE Cat. No.01CH37233).

[2]  H. Traff,et al.  Novel approach to high speed CMOS current comparators , 1992 .

[3]  Chun-Chi Chen,et al.  A Time Domain Mixed-Mode Temperature Sensor with Digital Set-Point Programming , 2006, IEEE Custom Integrated Circuits Conference 2006.

[4]  Chulwoo Kim,et al.  A 0.008 ${\hbox {mm}}^{2}$ 500 $\mu{\rm W}$ 469 kS/s Frequency-to-Digital Converter Based CMOS Temperature Sensor With Process Variation Compensation , 2013, IEEE Transactions on Circuits and Systems I: Regular Papers.

[5]  M. Tuthill A switched-current, switched-capacitor temperature sensor in 0.6-/spl mu/m CMOS , 1998 .

[6]  Chun-Chi Chen,et al.  A Low-Cost CMOS Smart Temperature Sensor Using a Thermal-Sensing and Pulse-Shrinking Delay Line , 2014, IEEE Sensors Journal.

[7]  Y. A. Eken,et al.  A 5.9-GHz voltage-controlled ring oscillator in 0.18-/spl mu/m CMOS , 2004, IEEE Journal of Solid-State Circuits.

[8]  Kofi A. A. Makinwa,et al.  A CMOS smart temperature sensor with a 3σ inaccuracy of ±0.1°C from -55°C to 125°C , 2005, IEEE J. Solid State Circuits.

[9]  Kyoungho Woo,et al.  Time-Domain CMOS Temperature Sensors With Dual Delay-Locked Loops for Microprocessor Thermal Monitoring , 2012, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[10]  Shen-Iuan Liu,et al.  A 0.5–5-GHz Wide-Range Multiphase DLL With a Calibrated Charge Pump , 2007, IEEE Transactions on Circuits and Systems II: Express Briefs.

[11]  Hung-Chih Lin,et al.  An Active-Frequency Compensation Scheme for CMOS Low-Dropout Regulators With Transient-Response Improvement , 2008, IEEE Transactions on Circuits and Systems II: Express Briefs.

[12]  Kofi A. A. Makinwa,et al.  A CMOS temperature sensor with a voltage-calibrated inaccuracy of ±0.15°C (3σ) from −55 to 125°C , 2012, 2012 IEEE International Solid-State Circuits Conference.

[13]  David Blaauw,et al.  A Fully-Integrated 71 nW CMOS Temperature Sensor for Low Power Wireless Sensor Nodes , 2014, IEEE Journal of Solid-State Circuits.

[14]  Chun-Chi Chen,et al.  A time-to-digital-converter-based CMOS smart temperature sensor , 2005 .

[15]  Chulwoo Kim,et al.  366-kS/s 1.09-nJ 0.0013-${\rm mm}^{2}$ Frequency-to-Digital Converter Based CMOS Temperature Sensor Utilizing Multiphase Clock , 2013, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[16]  Kofi A. A. Makinwa,et al.  A 0.12 mm 2 7.4 μ W Micropower Temperature Sensor With an Inaccuracy of ± 0.2°C (3 Sigma ) From - 30°C to 125°C , 2011, IEEE J. Solid State Circuits.

[17]  J. Huijsing,et al.  A CMOS smart temperature sensor with a 3σ inaccuracy of ±0.1°C from -55°C to 125°C , 2005, IEEE J. Solid State Circuits.

[18]  S. Naffziger,et al.  Power and temperature control on a 90-nm Itanium family processor , 2006, IEEE Journal of Solid-State Circuits.

[19]  David A. Johns,et al.  Analog Integrated Circuit Design , 1996 .

[20]  Johan H. Huijsing,et al.  Micropower CMOS temperature sensor with digital output , 1996, IEEE J. Solid State Circuits.

[21]  David Blaauw,et al.  An ultra low power 1V, 220nW temperature sensor for passive wireless applications , 2008, 2008 IEEE Custom Integrated Circuits Conference.

[22]  C. Fiocchi,et al.  Curvature compensated BiCMOS bandgap with 1 V supply voltage , 2001, Proceedings of the 26th European Solid-State Circuits Conference.

[23]  Franziska Hoffmann,et al.  Design Of Analog Cmos Integrated Circuits , 2016 .

[24]  Mohamad Sawan,et al.  High performance integrated CMOS frequency-to-voltage converter , 1998, Proceedings of the Tenth International Conference on Microelectronics (Cat. No.98EX186).

[25]  Salvatore Levantino,et al.  Frequency dependence on bias current in 5 GHz CMOS VCOs: impact on tuning range and flicker noise upconversion , 2002, IEEE J. Solid State Circuits.

[26]  Ching-Che Chung,et al.  An Autocalibrated All-Digital Temperature Sensor for On-Chip Thermal Monitoring , 2011, IEEE Transactions on Circuits and Systems II: Express Briefs.

[27]  P. Glenn Gulak,et al.  Dynamic current-mode multi-valued MOS memory with error correction , 1992, [1992] Proceedings The Twenty-Second International Symposium on Multiple-Valued Logic.

[28]  K. Kimura,et al.  Low voltage techniques for bias circuits , 1997 .

[29]  Kyoungho Woo,et al.  Dual-DLL-based CMOS all-digital temperature sensor for microprocessor thermal monitoring , 2009, 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[30]  Y. A. Eken,et al.  A 5.9-GHz Voltage-Controlled Ring Oscillator in 0.18- m CMOS , 2004 .

[31]  Chin-Chung Tsai,et al.  A time-to-digital-converter-based CMOS smart temperature sensor , 2005, 2005 IEEE International Symposium on Circuits and Systems.