Analog Circuits Soft Fault Diagnosis Using Rényi’s Entropy

An analog circuit soft fault diagnosis method using Rényi’s entropy is proposed. This method focuses on extracting the entropy information contained in the probability density function (PDF) of the output of the circuit under test (CUT), which is sensitive to the parameters of circuits. Firstly, using the Lagrange multiplier method with Rényi’s entropy deduces PDF. Then the parameter α of Rényi’s entropy is estimated adaptively by employing the output of CUT through the maximum likelihood estimation method. Finally, the value of Rényi’s entropy can be calculated using the PDF and α parameter. The divergence between the Rényi’s entropy corresponding to the fault and fault free circuits is adopted to detect the fault. The method can detect soft fautls, including the single fault and multiple faults, without complicated models and mass of data, and also without interrupting the inherent connections. We conduct experiments respectively on two circuits that are implemented on an actual circuit board. The effectiveness of the proposed method is demonstrated by the result of the experiment.

[1]  J. P. Burg,et al.  Maximum entropy spectral analysis. , 1967 .

[2]  Peng Wang,et al.  A new diagnosis approach for handling tolerance in analog and mixed-signal circuits by using fuzzy math , 2005, IEEE Trans. Circuits Syst. I Regul. Pap..

[3]  Vishwani D. Agrawal,et al.  Testing linear and non-linear analog circuits using moment generating functions , 2011, 2011 12th Latin American Test Workshop (LATW).

[4]  C. Tsallis Introduction to Nonextensive Statistical Mechanics: Approaching a Complex World , 2009 .

[5]  Lars Nielsen,et al.  The Principle of Maximum Entropy Applied in the Evaluation of the Measurement Uncertainty , 2006, IEEE Transactions on Instrumentation and Measurement.

[6]  Farzan Aminian,et al.  Analog fault diagnosis of actual circuits using neural networks , 2002, IEEE Trans. Instrum. Meas..

[7]  B. Frieden Restoring with maximum likelihood and maximum entropy. , 1972, Journal of the Optical Society of America.

[8]  Vishwani D. Agrawal,et al.  Test and Diagnosis of Analog Circuits Using Moment Generating Functions , 2011, 2011 Asian Test Symposium.

[9]  M. Lagunas-Hernandez,et al.  ARMA model maximum entropy power spectral estimation , 1984 .

[10]  Athanasios Papoulis,et al.  Probability, Random Variables and Stochastic Processes , 1965 .

[11]  Jacob A. Abraham,et al.  Pseudorandom Test of Nonlinear Analog and Mixed-Signal Circuits Based on a Volterra Series Model , 2011, J. Electron. Test..

[12]  Ashok Kavithamani,et al.  Soft Fault Classification of Analog Circuits Using Network Parameters and Neural Networks , 2013, J. Electron. Test..

[13]  Xifeng Li,et al.  Analog Circuits Fault Detection Using Cross-Entropy Approach , 2013, J. Electron. Test..

[14]  B. Frieden,et al.  Physics from Fisher Information by B. Roy Frieden , 1998 .

[15]  Xuan Xie,et al.  Soft Fault Diagnosis of Analog Circuits via Frequency Response Function Measurements , 2014, J. Electron. Test..

[16]  Douglas E. Lake,et al.  Renyi entropy measures of heart rate Gaussianity , 2006, IEEE Transactions on Biomedical Engineering.

[17]  M. Ben-Bassat,et al.  Renyi's entropy and the probability of error , 1978, IEEE Trans. Inf. Theory.

[18]  A. Rényi On Measures of Entropy and Information , 1961 .