Histidine at position 1042 of the p150 region of a KRT live attenuated rubella vaccine strain is responsible for the temperature sensitivity.

[1]  H. Ushijima,et al.  Genomic analysis of diverse rubella virus genotypes. , 2007, The Journal of general virology.

[2]  T. Ahola,et al.  Enzymatic Defects of the nsP2 Proteins of Semliki Forest Virus Temperature-Sensitive Mutants , 2007, Journal of Virology.

[3]  T. Ahola,et al.  Identification of Mutations Causing Temperature-Sensitive Defects in Semliki Forest Virus RNA Synthesis , 2006, Journal of Virology.

[4]  B. Murphy,et al.  A Tick-Borne Langat Virus Mutant That Is Temperature Sensitive and Host Range Restricted in Neuroblastoma Cells and Lacks Neuroinvasiveness for Immunodeficient Mice , 2006, Journal of Virology.

[5]  T. Frey,et al.  Complementation of a Deletion in the Rubella Virus P150 Nonstructural Protein by the Viral Capsid Protein , 2003, Journal of Virology.

[6]  H. Nakhasi,et al.  Effect of site-directed asparagine to isoleucine substitutions at the N-linked E1 glycosylation sites on rubella virus viability. , 2001, Virus research.

[7]  B. Murphy,et al.  Chemical Mutagenesis of Dengue Virus Type 4 Yields Mutant Viruses Which Are Temperature Sensitive in Vero Cells or Human Liver Cells and Attenuated in Mice , 2001, Journal of Virology.

[8]  H. Ushijima,et al.  Mutations of rubella virus vaccine TO-336 strain occurred in the attenuation process of wild progenitor virus. , 2001, Vaccine.

[9]  H. Nakhasi,et al.  Rubella Virus E2 Signal Peptide Is Required for Perinuclear Localization of Capsid Protein and Virus Assembly , 2001, Journal of Virology.

[10]  T. Frey,et al.  Infectious cDNA clone of the RA27/3 vaccine strain of Rubella virus. , 2000, Virology.

[11]  S. Gillam,et al.  Mutations in the E1 Hydrophobic Domain of Rubella Virus Impair Virus Infectivity but Not Virus Assembly , 2000, Journal of Virology.

[12]  S. Gillam,et al.  A Single-Amino-Acid Substitution of a Tyrosine Residue in the Rubella Virus E1 Cytoplasmic Domain Blocks Virus Release , 2000, Journal of Virology.

[13]  J. Chantler,et al.  Mapping of Genetic Determinants of Rubella Virus Associated with Growth in Joint Tissue , 2000, Journal of Virology.

[14]  S. Gillam,et al.  Mutational Analysis, Using a Full-Length Rubella Virus cDNA Clone, of Rubella Virus E1 Transmembrane and Cytoplasmic Domains Required for Virus Release , 1999, Journal of Virology.

[15]  Honey Chan,et al.  Role of Rubella Virus Glycoprotein Domains in Assembly of Virus-Like Particles , 1999, Journal of Virology.

[16]  Decheng Yang,et al.  Effects of Mutations in the Rubella Virus E1 Glycoprotein on E1-E2 Interaction and Membrane Fusion Activity , 1998, Journal of Virology.

[17]  S. Weaver,et al.  Molecular analysis of rubella virus epidemiology across three continents, North America, Europe, and Asia, 1961-1997. , 1998, The Journal of infectious diseases.

[18]  J. Suopanki,et al.  Regulation of alphavirus 26S mRNA transcription by replicase component nsP2. , 1998, The Journal of general virology.

[19]  T. Frey,et al.  Effects of Defined Mutations in the 5′ Nontranslated Region of Rubella Virus Genomic RNA on Virus Viability and Macromolecule Synthesis , 1998, Journal of Virology.

[20]  E. Abernathy,et al.  Improvement of the specific infectivity of the rubella virus (RUB) infectious clone: determinants of cytopathogenicity induced by RUB map to the nonstructural proteins , 1997, Journal of virology.

[21]  S. Sawicki,et al.  Sindbis virus RNA-negative mutants that fail to convert from minus-strand to plus-strand synthesis: role of the nsP2 protein , 1996, Journal of virology.

[22]  Y. Umino Improved potency assay of rubella vaccine: parameters for plaque formation. , 1995, Journal of virological methods.

[23]  T. Frey Molecular Biology of Rubella Virus , 1994, Advances in Virus Research.

[24]  C. Y. Wang,et al.  Construction of rubella virus genome-length cDNA clones and synthesis of infectious RNA transcripts , 1994, Journal of virology.

[25]  R. Lamb,et al.  Folding and assembly of viral membrane proteins. , 1993, Virology.

[26]  S. Gillam,et al.  The influence of N-linked glycosylation on the antigenicity and immunogenicity of rubella virus E1 glycoprotein. , 1992, Virology.

[27]  D. T. Brown,et al.  Protein-protein interactions in an alphavirus membrane , 1991, Journal of virology.

[28]  T. Frey,et al.  Sequence of the genome RNA of rubella virus: Evidence for genetic rearrangement during togavirus evolution☆ , 1990, Virology.

[29]  J. H. Strauss,et al.  Mapping of RNA- temperature-sensitive mutants of Sindbis virus: assignment of complementation groups A, B, and G to nonstructural proteins , 1989, Journal of virology.

[30]  P. Chong,et al.  Nucleotide sequence and in vitro expression of rubella virus 24S subgenomic messenger RNA encoding the structural proteins E1, E2 and C. , 1987, Nucleic acids research.

[31]  J. Krieger,et al.  A hamster-attenuated, temperature-sensitive mutant of Venezuelan encephalitis virus , 1979, Infection and immunity.

[32]  A. Shishido,et al.  Development of attenuated rubella virus vaccines in Japan. , 1976, Japanese journal of medical science & biology.

[33]  G. Schiff,et al.  Stability of the Rabbit Immunogenic Marker of RA 27/3 Rubella Vaccine Virus After Human Passage , 1974, Infection and immunity.

[34]  A. Brown,et al.  Pathogenesis of Temperature-Sensitive Mutants of Sindbis Virus in the Embryonated Egg I. Characterization and Kinetics of Viral Multiplication , 1974, Infection and immunity.

[35]  S. Plotkin,et al.  Markers of Rubella Virus Strains in RK13 Cell Culture , 1969, Journal of virology.

[36]  S. Plotkin,et al.  Studies of immunization with living rubella virus. Trials in children with a strain cultured from an aborted fetus. , 1965, American journal of diseases of children.

[37]  O. Raineteau,et al.  Semliki Forest virus A7(74) transduces hippocampal neurons and glial cells in a temperature-dependent dual manner , 2011, Journal of NeuroVirology.

[38]  A. Sugiura,et al.  Inability of Japanese rubella vaccines to induce antibody response in rabbits is due to growth restriction at 39° C , 2005, Archives of Virology.

[39]  E. Abernathy,et al.  Genomic sequence of the RAff27/3 vaccine strainof rubella virus , 1997, Archives of Virology.

[40]  J. Chantler,et al.  Characterization of rubella virus strain differences associated with attenuation. , 1993, Intervirology.

[41]  U. Carcassi History of hypertrophic osteoarthropathy (HOA). , 1992, Clinical and experimental rheumatology.

[42]  M. Korolev,et al.  A study of microfoci and inclusion bodies produced by rubella virus in the RK-13 cell line. , 1974, The Journal of general virology.