Past Climate Change and Plant Evolution in Western North America: A Case Study in Rosaceae

Species in the ivesioid clade of Potentilla (Rosaceae) are endemic to western North America, an area that underwent widespread aridification during the global temperature decrease following the Mid-Miocene Climatic Optimum. Several morphological features interpreted as adaptations to drought are found in the clade, and many species occupy extremely dry habitats. Recent phylogenetic analyses have shown that the sister group of this clade is Potentilla section Rivales, a group with distinct moist habitat preferences. This has led to the hypothesis that the ivesioids (genera Ivesia, Horkelia and Horkeliella) diversified in response to the late Tertiary aridification of western North America. We used phyloclimatic modeling and a fossil-calibrated dated phylogeny of the family Rosaceae to investigate the evolution of the ivesioid clade. We have combined occurrence- and climate data from extant species, and used ancestral state reconstruction to model past climate preferences. These models have been projected into paleo-climatic scenarios in order to identify areas where the ivesioids may have occurred. Our analysis suggests a split between the ivesioids and Potentilla sect. Rivales around Late Oligocene/Early Miocene (∼23 million years ago, Ma), and that the ivesioids then diversified at a time when summer drought started to appear in the region. The clade is inferred to have originated on the western slopes of the Rocky Mountains from where a westward range expansion to the Sierra Nevada and the coast of California took place between ∼12-2 Ma. Our results support the idea that climatic changes in southwestern North America have played an important role in the evolution of the local flora, by means of in situ adaptation followed by diversification.

[1]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[2]  M. Töpel,et al.  Molecular data and ploidal levels indicate several putative allopolyploidization events in the genus Potentilla (Rosaceae) , 2011, PLoS currents.

[3]  C. Yesson,et al.  Biogeography of cyclamen: an application of phyloclimatic modelling , 2011 .

[4]  C. Dobeš,et al.  A comprehensive chloroplast DNA-based phylogeny of the genus Potentilla (Rosaceae): implications for its geographic origin, phylogeography and generic circumscription. , 2010, Molecular phylogenetics and evolution.

[5]  Christoph Häuser,et al.  EVOLUTIONARY BIOLOGY IN BIODIVERSITY SCIENCE, CONSERVATION, AND POLICY: A CALL TO ACTION , 2010, Evolution; international journal of organic evolution.

[6]  Marc A. Suchard,et al.  Many-core algorithms for statistical phylogenetics , 2009, Bioinform..

[7]  Maria A. Gandolfo,et al.  Phylogenetic biome conservatism on a global scale , 2009, Nature.

[8]  D. Soltis,et al.  Rosid radiation and the rapid rise of angiosperm-dominated forests , 2009, Proceedings of the National Academy of Sciences.

[9]  Margaret E K Evans,et al.  Climate, Niche Evolution, and Diversification of the “Bird‐Cage” Evening Primroses (Oenothera, Sections Anogra and Kleinia) , 2008, The American Naturalist.

[10]  M. Turelli,et al.  Environmental Niche Equivalency versus Conservatism: Quantitative Approaches to Niche Evolution , 2008, Evolution; international journal of organic evolution.

[11]  Gerald R. Dickens,et al.  An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics , 2008, Nature.

[12]  A. Rambaut,et al.  BEAST: Bayesian evolutionary analysis by sampling trees , 2007, BMC Evolutionary Biology.

[13]  D. R. Morgan,et al.  Phylogeny and classification of Rosaceae , 2007, Plant Systematics and Evolution.

[14]  C. Yesson,et al.  Phyloclimatic modeling: combining phylogenetics and bioclimatic modeling. , 2006, Systematic biology.

[15]  P. Hernandez,et al.  The effect of sample size and species characteristics on performance of different species distribution modeling methods , 2006 .

[16]  Greg Hughes,et al.  Vulnerability of African mammals to anthropogenic climate change under conservative land transformation assumptions , 2006 .

[17]  L. Affre,et al.  Ecological differentiation of Mediterranean endemic plants , 2005 .

[18]  J. Spangle,et al.  CLIMATE AND LIFE‐HISTORY EVOLUTION IN EVENING PRIMROSES (OENOTHERA, ONAGRACEAE): A PHYLOGENETIC COMPARATIVE ANALYSIS , 2005, Evolution; international journal of organic evolution.

[19]  L. Beaumont,et al.  Predicting species distributions: use of climatic parameters in BIOCLIM and its impact on predictions of species’ current and future distributions , 2005 .

[20]  K. Katoh,et al.  MAFFT version 5: improvement in accuracy of multiple sequence alignment , 2005, Nucleic acids research.

[21]  Michael P. Cummings,et al.  PAUP* [Phylogenetic Analysis Using Parsimony (and Other Methods)] , 2004 .

[22]  C. Graham,et al.  INTEGRATING PHYLOGENETICS AND ENVIRONMENTAL NICHE MODELS TO EXPLORE SPECIATION MECHANISMS IN DENDROBATID FROGS , 2004, Evolution; international journal of organic evolution.

[23]  A. Townsend Peterson,et al.  Reconstructing the Pleistocene geography of the Aphelocoma jays (Corvidae) , 2004 .

[24]  D. Jacobs,et al.  GENES, DIVERSITY, AND GEOLOGIC PROCESS ON THE PACIFIC COAST , 2004 .

[25]  D. Hilbert,et al.  Golden bowerbird (Prionodura newtonia) habitat in past, present and future climates: predicted extinction of a vertebrate in tropical highlands due to global warming , 2004 .

[26]  Dena M. Smith The Fossils of Florissant , 2004 .

[27]  Korbinian Strimmer,et al.  APE: Analyses of Phylogenetics and Evolution in R language , 2004, Bioinform..

[28]  M. Donoghue,et al.  Phylogenetic analysis ofPotentilla using DNA sequences of nuclear ribosomal internal transcribed spacers (ITS), and implications for the classification ofRosoideae (Rosaceae) , 1998, Plant Systematics and Evolution.

[29]  P. Taberlet,et al.  Universal primers for amplification of three non-coding regions of chloroplast DNA , 1991, Plant Molecular Biology.

[30]  James G. Ogg,et al.  A Geologic Time Scale 2004: CONCEPTS AND METHODS , 2004 .

[31]  W. McIntosh,et al.  Geochronology of the central Colorado volcanic field , 2004 .

[32]  J. V. Matthews,et al.  Stratigraphy, fossils, and age of sediments at the upper pit of the Lost Chicken gold mine: new information on the late Pliocene environment of east central Alaska , 2003, Quaternary Research.

[33]  M. Donoghue,et al.  The Phylogeny of Rosoideae (Rosaceae) Based on Sequences of the Internal Transcribed Spacers (ITS) of Nuclear Ribosomal DNA and the trnL/F Region of Chloroplast DNA , 2003, International Journal of Plant Sciences.

[34]  A. Herman Late Early-Late Cretaceous floras of the North Pacific Region: Florogenesis and early angiosperm invasion , 2002 .

[35]  R. Pierrehumbert The hydrologic cycle in deep-time climate problems , 2002, Nature.

[36]  John Stanisic,et al.  Reconciling paleodistribution models and comparative phylogeography in the Wet Tropics rainforest land snail Gnarosophia bellendenkerensis (Brazier 1875) , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[37]  Hongwen Huang,et al.  Molecular Phylogeny and Infrageneric Classification of Actinidia (Actinidiaceae) , 2002 .

[38]  D. Swofford PAUP*: Phylogenetic analysis using parsimony (*and other methods), Version 4.0b10 , 2002 .

[39]  D. Mai Die mittelmiozaenen und obermiozaenen Floren aus der Meuroer und Raunoer Folge in der Lausitz: Teil III: Fundstellen und Palaeobiologie , 2001 .

[40]  M. Lanphere Duration of sedimentation of Creede Formation from 40Ar/39Ar ages , 2000 .

[41]  M. P. Cummings,et al.  PAUP* Phylogenetic analysis using parsimony (*and other methods) Version 4 , 2000 .

[42]  Simon P. Kelley,et al.  New40Ar/39Ar dates for Cretaceous Chauna Group tephra, north-eastern Russia, and their implications for the geologic history and floral evolution of the North Pacific region , 1999 .

[43]  D. Whigham,et al.  Molecular Systematics of the Genus Uvularia and Selected Liliales Based upon mat K and rbc L Gene Sequence Data , 1998 .

[44]  D. Schluter,et al.  LIKELIHOOD OF ANCESTOR STATES IN ADAPTIVE RADIATION , 1997, Evolution; international journal of organic evolution.

[45]  John Bell,et al.  A review of methods for the assessment of prediction errors in conservation presence/absence models , 1997, Environmental Conservation.

[46]  J. C. Hickman,et al.  The Jepson Manual: Higher Plants of California , 1993 .

[47]  C. Strauss,et al.  Relative sea-level fluctuations and brown coal formation around the Early-Middle Miocene boundary in the Lusatian Brown Coal District , 1993 .

[48]  B. Ertter A re-evaluation of the Horkelia bolanderi (Rosaceae) complex, with the new species Horkelia yadonii. , 1993 .

[49]  J. V. Matthews,et al.  Late Tertiary Plant Macrofossils from Localities in Arctic/Subarctic North America: A Review of the Data , 1990 .

[50]  B. Ertter Revisionary Studies in Ivesia (Rosaceae: Potentilleae) , 1989 .

[51]  J. A. Wolfe,et al.  Taxonomic revision of the Spermatopsida of the Oligocene Creede flora, southern Colorado , 1989 .

[52]  D. I. Axelrod The Late Oligocene Creede Flora, Colorado , 1987 .

[53]  J. Hanley,et al.  The meaning and use of the area under a receiver operating characteristic (ROC) curve. , 1982, Radiology.

[54]  W. B. Harland,et al.  A Geologic time scale , 1982 .

[55]  L. Pijl,et al.  TECHNIQUES IN POLLINATION ECOLOGY , 1979 .

[56]  Knut Faegri,et al.  The principles of pollination ecology , 1967 .

[57]  W. H. Mathews POTASSIUM-ARGON AGE DETERMINATIONS OF CENOZOIC VOLCANIC ROCKS FROM BRITISH COLUMBIA , 1964 .