Equation of state of cold quark matter to $O(\alpha_s^3 \ln \alpha_s)$

Accurately understanding the equation of state (EOS) of high-density, zero-temperature quark matter plays an essential role in constraining the behavior of dense strongly interacting matter inside the cores of neutron stars. In this Letter, we study the weak-coupling expansion of the EOS of cold quark matter and derive the complete, gauge-invariant contributions from the long-wavelength, dynamically screened gluonic sector at next-to-next-to-next-to-leading order (N3LO) in the strong coupling constant $\alpha_s$. This elevates the EOS result to the $O(\alpha_s^3 \ln \alpha_s)$ level, leaving only one unknown constant from the unscreened sector at N3LO, and places it on par with its high-temperature counterpart from 2003. This is achieved by generalizing next-to-leading order gluon self-energies within the hard-thermal-loop limit from high temperatures and densities to zero temperature. We find that including these screened gluonic contributions at N3LO yields a remarkably well-converged EOS, with essentially no renormalization-scale dependence. Finally, we perform a Bayesian estimation of the remaining unscreened contribution at N3LO and find that the full EOS of cold quark matter at this order may show markedly improved convergence over the lower-order results.

[1]  K. Chatziioannou,et al.  Phase transition phenomenology with nonparametric representations of the neutron star equation of state , 2023, Physical Review D.

[2]  R. Paatelainen,et al.  Soft gluon self-energy at finite temperature and density: hard NLO corrections in general covariant gauge , 2023, Journal of High Energy Physics.

[3]  A. Ekstedt,et al.  Propagation of gauge fields in hot and dense plasmas at higher orders , 2023, 2304.09255.

[4]  A. Vuorinen,et al.  Integrating by parts at finite density , 2023, Journal of High Energy Physics.

[5]  A. Mazeliauskas,et al.  Bayesian uncertainty quantification of perturbative QCD input to the neutron-star equation of state , 2023, Journal of High Energy Physics.

[6]  J. Schaffner-Bielich,et al.  What neutron stars tell about the hadron-quark phase transition: A Bayesian study , 2023, Physical Review D.

[7]  M. Stephanov,et al.  Dense Nuclear Matter Equation of State from Heavy-Ion Collisions , 2023, 2301.13253.

[8]  A. Schwenk,et al.  Constraints on Strong Phase Transitions in Neutron Stars , 2022, The Astrophysical Journal.

[9]  L. Rezzolla,et al.  Bayesian Analysis of Neutron-star Properties with Parameterized Equations of State: The Role of the Likelihood Functions , 2022, The Astrophysical Journal.

[10]  Tyler Gorda,et al.  Augmenting the residue theorem with boundary terms in finite-density calculations , 2022, Physical Review D.

[11]  L. Mclerran,et al.  Reaching percolation and conformal limits in neutron stars , 2022, Physical Review C.

[12]  L. Mclerran,et al.  Trace Anomaly as Signature of Conformality in Neutron Stars. , 2022, Physical review letters.

[13]  J. Margueron,et al.  Perturbative QCD and the neutron star equation of state , 2022, Physical Review C.

[14]  A. Kurkela,et al.  Ab-initio QCD Calculations Impact the Inference of the Neutron-star-matter Equation of State , 2022, The Astrophysical Journal.

[15]  R. Paatelainen,et al.  Degenerate fermionic matter at N$^3$LO: Quantum Electrodynamics , 2022, 2204.11893.

[16]  R. Paatelainen,et al.  Soft photon propagation in a hot and dense medium to next-to-leading order , 2022, Physical Review D.

[17]  L. Rezzolla,et al.  On the Sound Speed in Neutron Stars , 2022, The Astrophysical Journal Letters.

[18]  A. Kurkela,et al.  How Perturbative QCD Constrains the Equation of State at Neutron-Star Densities. , 2021, Physical review letters.

[19]  J. Kneur,et al.  All Order Resummed Leading and Next-to-Leading Soft Modes of Dense QCD Pressure. , 2021, Physical review letters.

[20]  A. Huss,et al.  An analysis of Bayesian estimates for missing higher orders in perturbative calculations , 2021, Journal of High Energy Physics.

[21]  V. Paschalidis,et al.  Multimessenger Constraints for Ultradense Matter , 2021, Physical Review X.

[22]  R. Paatelainen,et al.  Cold quark matter at N3LO : Soft contributions , 2021, Physical Review D.

[23]  R. Paatelainen,et al.  Soft Interactions in Cold Quark Matter. , 2021, Physical review letters.

[24]  M. Bonvini Probabilistic definition of the perturbative theoretical uncertainty from missing higher orders , 2020, The European Physical Journal C.

[25]  M. Strickland,et al.  Perturbative thermal QCD: Formalism and applications , 2020, 2002.10188.

[26]  S. Carignano,et al.  The HTL Lagrangian at NLO: The photon case , 2019, Physics Letters B.

[27]  A. Vuorinen,et al.  Evidence for quark-matter cores in massive neutron stars , 2019, Nature Physics.

[28]  P. Romatschke,et al.  Next-to-Next-to-Next-to-Leading Order Pressure of Cold Quark Matter: Leading Logarithm. , 2018, Physical review letters.

[29]  Luciano Rezzolla,et al.  New Constraints on Radii and Tidal Deformabilities of Neutron Stars from GW170817. , 2018, Physical review letters.

[30]  S. Carignano,et al.  Power corrections to the HTL effective Lagrangian of QED , 2017, 1712.07949.

[31]  A. Vuorinen,et al.  Gravitational-Wave Constraints on the Neutron-Star-Matter Equation of State. , 2017, Physical review letters.

[32]  M. Laine,et al.  Basics of Thermal Field Theory , 2017, 1701.01554.

[33]  P. Romatschke,et al.  On high-order perturbative calculations at finite density , 2016, 1609.04339.

[34]  J. Schaffner-Bielich,et al.  CONSTRAINING NEUTRON STAR MATTER WITH QUANTUM CHROMODYNAMICS , 2014 .

[35]  M. Cacciari,et al.  Meaningful characterisation of perturbative theoretical uncertainties , 2011, 1105.5152.

[36]  P. Forcrand Simulating QCD at finite density , 2010, 1005.0539.

[37]  A. Ipp,et al.  Pressure of deconfined QCD for all temperatures and quark chemical potentials , 2006, hep-ph/0608250.

[38]  D. Rischke,et al.  Gluon self-energy in the color-flavor-locked phase , 2006, hep-ph/0602082.

[39]  A. Ipp,et al.  Anomalous specific heat in high-density QED and QCD , 2003, hep-ph/0309019.

[40]  H. Ren Color Superconductivity in a Dense Quark Matter , 2003, hep-ph/0307125.

[41]  A. Vuorinen Pressure of QCD at finite temperatures and chemical potentials , 2003, hep-ph/0305183.

[42]  M. Laine,et al.  The Pressure of hot QCD up to g6 ln(1/g) , 2002, hep-ph/0211321.

[43]  Y. Schröder Automatic reduction of four-loop bubbles , 2002 .

[44]  M. Strickland,et al.  HTL Perturbation Theory to Two Loops , 2002, hep-ph/0205085.

[45]  E. Iancu,et al.  The quark-gluon plasma: collective dynamics and hard thermal loops , 2001, hep-ph/0101103.

[46]  E. Braaten,et al.  Soft amplitudes in hot gauge theories: A general analysis , 1990 .

[47]  L. Mclerran,et al.  Fermions and gauge vector mesons at finite temperature and density. II. The ground-state energy of a relativistic electron gas , 1977 .

[48]  L. Mclerran,et al.  Fermions and gauge vector mesons at finite temperature and density. I. Formal techniques , 1977 .

[49]  N. Kaiser,et al.  Evidence against a first-order phase transition in neutron star cores: impact of new data , 2023 .

[50]  W. J. Maciel The Electron Gas , 2016 .

[51]  M. Shaposhnikov,et al.  Generic rules for high temperature dimensional reduction and their application to the Standard Model , 1996 .