Reducibility of 1-D Quantum Harmonic Oscillator with New Unbounded Oscillatory Perturbations

[1]  Zhenguo Liang,et al.  Growth of Sobolev Norms in 1-d Quantum Harmonic Oscillator with Polynomial Time Quasi-periodic Perturbation , 2021, Communications in Mathematical Physics.

[2]  Laurent Thomann,et al.  Growth of Sobolev norms for coupled lowest Landau level equations , 2020, Pure and Applied Analysis.

[3]  Jiawen Luo,et al.  Reducibility of 1-d quantum harmonic oscillator equation with unbounded oscillation perturbations , 2020, Journal of Differential Equations.

[4]  Zhenguo Liang,et al.  1-d Quantum harmonic oscillator with time quasi-periodic quadratic perturbation: Reducibility and growth of Sobolev norms , 2020, 2003.13034.

[5]  B. Grébert,et al.  Reducibility of Schrödinger Equation on the Sphere , 2020 .

[6]  R. Feola,et al.  Reducibility of Schrödinger equation on a Zoll manifold with unbounded potential , 2019, 1910.10657.

[7]  M. Berti,et al.  Long time dynamics of Schrödinger and wave equations on flat tori , 2018, Journal of Differential Equations.

[8]  Riccardo Montalto,et al.  Reducibility of Non-Resonant Transport Equation on $${\mathbb {T}}^d$$Td with Unbounded Perturbations , 2018, Annales Henri Poincaré.

[9]  Riccardo Montalto,et al.  Reducibility of first order linear operators on tori via Moser's theorem , 2018, Journal of Functional Analysis.

[10]  Zhenguo Liang,et al.  Reducibility of quantum harmonic oscillator on Rd with differential and quasi-periodic in time potential , 2017, Journal of Differential Equations.

[11]  Riccardo Montalto A P ] 9 A ug 2 01 7 A reducibility result for a class of linear wave equations on T d , 2018 .

[12]  D. Robert,et al.  Reducibility of the Quantum Harmonic Oscillator in $d$-dimensions with Polynomial Time Dependent Perturbation , 2017, 1702.05274.

[13]  D. Bambusi Reducibility of 1-d Schrödinger Equation with Time Quasiperiodic Unbounded Perturbations, II , 2017, Communications in Mathematical Physics.

[14]  D. Robert,et al.  On time dependent Schrödinger equations: Global well-posedness and growth of Sobolev norms , 2016, 1610.03359.

[15]  Zhenguo Liang,et al.  Reducibility of 1D quantum harmonic oscillator perturbed by a quasiperiodic potential with logarithmic decay , 2016, 1605.05480.

[16]  D. Bambusi Reducibility of 1-d Schrödinger Equation with Time Quasiperiodic Unbounded Perturbations, II , 2016, Communications in Mathematical Physics.

[17]  Jean-Marc Delort Growth of Sobolev Norms for Solutions of Time Dependent Schrödinger Operators with Harmonic Oscillator Potential , 2014 .

[18]  D. Fang,et al.  On Growth of Sobolev Norms in Linear Schrödinger Equations with Time Dependent Gevrey Potential , 2012 .

[19]  B. Grébert,et al.  KAM for the Quantum Harmonic Oscillator , 2010, 1003.2793.

[20]  Sergei Kuksin,et al.  KAM for the nonlinear Schrödinger equation , 2010 .

[21]  S. Kuksin,et al.  On Reducibility of Schrödinger Equations with Quasiperiodic in Time Potentials , 2009 .

[22]  W.-M. Wang Logarithmic Bounds on Sobolev Norms for Time Dependent Linear Schrödinger Equations , 2008, 0805.3771.

[23]  W.-M. Wang,et al.  Pure Point Spectrum of the Floquet Hamiltonian for the Quantum Harmonic Oscillator Under Time Quasi-Periodic Perturbations , 2007, 0805.3764.

[24]  D. Bambusi,et al.  Time Quasi-Periodic Unbounded Perturbations¶of Schrödinger Operators and KAM Methods , 2000, math-ph/0010002.

[25]  K. Yajima,et al.  Absolute Continuity of the Floquet Spectrum¶for a Nonlinearly Forced Harmonic Oscillator , 2000, math-ph/0003007.

[26]  J. Bourgain Growth of Sobolev Norms in Linear Schrödinger Equations with Quasi-Periodic Potential , 1999 .