Enhancement of the photoelectrochemical water splitting by perovskite BiFeO3 via interfacial engineering

[1]  M. Kraft,et al.  Research advances towards large-scale solar hydrogen production from water , 2019, EnergyChem.

[2]  A. Qurashi,et al.  Au/Ga2O3/ZnO heterostructure nanorods arrays for effective photoelectrochemical water splitting , 2019, Solar Energy.

[3]  Yanfa Yan,et al.  Oxide perovskites, double perovskites and derivatives for electrocatalysis, photocatalysis, and photovoltaics , 2019, Energy & Environmental Science.

[4]  H. Tan,et al.  Tuning the morphology and structure of disordered hematite photoanodes for improved water oxidation: A physical and chemical synergistic approach , 2018, Nano Energy.

[5]  U. Bach,et al.  Spray deposition of AgBiS2 and Cu3BiS3 thin films for photovoltaic applications , 2018 .

[6]  Ho Won Jang,et al.  Domain-engineered BiFeO3 thin-film photoanodes for highly enhanced ferroelectric solar water splitting , 2018, Nano Research.

[7]  A. Javey,et al.  Tantalum Oxide Electron-selective Heterocontacts for Silicon Photovoltaics and Photoelectrochemical Water Reduction , 2018 .

[8]  S. Muqthiar Ali,et al.  Plasmon aided (BiVO 4 ) x -(TiO 2 ) 1-x ternary nanocomposites for efficient solar water splitting , 2017 .

[9]  Z. Yamani,et al.  A facile one-step strategy for in-situ fabrication of WO3-BiVO4 nanoarrays for solar-driven photoelectrochemical water splitting applications , 2017 .

[10]  Yen-Lin Huang,et al.  Tunable photoelectrochemical performance of Au/BiFeO3 heterostructure. , 2016, Nanoscale.

[11]  C. Zhang,et al.  Improved photoelectrocatalytic properties of Ti-doped BiFeO3 films for water oxidation , 2016, Journal of Materials Science.

[12]  L. You,et al.  Enhanced ferroelectric photoelectrochemical properties of polycrystalline BiFeO3 film by decorating with Ag nanoparticles , 2016 .

[13]  L. Spiccia,et al.  Scalable Synthesis of Efficient Water Oxidation Catalysts: Insights into the Activity of Flame-Made Manganese Oxide Nanocrystals. , 2015, ChemSusChem.

[14]  Xudong Wang,et al.  Ferroelectric Polarization-Enhanced Photoelectrochemical Water Splitting in TiO2-BaTiO3 Core-Shell Nanowire Photoanodes. , 2015, Nano letters.

[15]  C. Carmalt,et al.  Visible-light driven water splitting over BiFeO₃ photoanodes grown via the LPCVD reaction of [Bi(OtBu)₃] and [Fe(OtBu)₃]₂ and enhanced with a surface nickel oxygen evolution catalyst. , 2015, Nanoscale.

[16]  L. Wong,et al.  Revealing the Role of TiO2 Surface Treatment of Hematite Nanorods Photoanodes for Solar Water Splitting. , 2015, ACS applied materials & interfaces.

[17]  Ali Javey,et al.  Enabling unassisted solar water splitting by iron oxide and silicon , 2015, Nature Communications.

[18]  Wei Huang,et al.  Bandgap tuning of multiferroic oxide solar cells , 2014, Nature Photonics.

[19]  Y. Lei,et al.  Switchable charge-transfer in the photoelectrochemical energy-conversion process of ferroelectric BiFeO₃ photoelectrodes. , 2014, Angewandte Chemie.

[20]  R. Liu,et al.  Improving hematite-based photoelectrochemical water splitting with ultrathin TiO2 by atomic layer deposition. , 2014, ACS applied materials & interfaces.

[21]  Matthew R. Shaner,et al.  Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation , 2014, Science.

[22]  C. Carmalt,et al.  A simple, low-cost CVD route to thin films of BiFeO3 for efficient water photo-oxidation , 2014 .

[23]  G. Rohrer,et al.  Photocatalysts with internal electric fields. , 2014, Nanoscale.

[24]  Marin Alexe,et al.  Role of domain walls in the abnormal photovoltaic effect in BiFeO3 , 2013, Nature Communications.

[25]  Jiangtian Li,et al.  Plasmon-induced photonic and energy-transfer enhancement of solar water splitting by a hematite nanorod array , 2013, Nature Communications.

[26]  Yung C. Liang,et al.  Epitaxial ferroelectric BiFeO3 thin films for unassisted photocatalytic water splitting , 2013 .

[27]  Paul C. McIntyre,et al.  Effects of catalyst material and atomic layer deposited TiO2 oxide thickness on the water oxidation performance of metal–insulator–silicon anodes , 2013 .

[28]  Ramamoorthy Ramesh,et al.  Efficient photovoltaic current generation at ferroelectric domain walls. , 2011, Physical review letters.

[29]  C. M. Folkman,et al.  Polarity control of carrier injection at ferroelectric/metal interfaces for electrically switchable diode and photovoltaic effects , 2011, 1108.3171.

[30]  Yichuan Ling,et al.  Sn-doped hematite nanostructures for photoelectrochemical water splitting. , 2011, Nano letters.

[31]  Michael Grätzel,et al.  Passivating surface states on water splitting hematite photoanodes with alumina overlayers , 2011 .

[32]  James R. McKone,et al.  Solar water splitting cells. , 2010, Chemical reviews.

[33]  P Shafer,et al.  Above-bandgap voltages from ferroelectric photovoltaic devices. , 2010, Nature nanotechnology.

[34]  P. Lunkenheimer,et al.  On the room temperature multiferroic BiFeO3: magnetic, dielectric and thermal properties , 2009, 0910.0385.

[35]  R. Ramesh,et al.  Photovoltaic effects in BiFeO3 , 2009 .

[36]  J. Jang,et al.  Microwave synthesis of single-crystalline perovskite BiFeO3 nanocubes for photoelectrode and photocatalytic applications , 2008 .

[37]  Ramamoorthy Ramesh,et al.  Photoconductivity in BiFeO3 thin films , 2008 .

[38]  Tao Yu,et al.  Visible‐Light Photocatalytic Properties of Weak Magnetic BiFeO3 Nanoparticles , 2007 .

[39]  Zhiqiang Li,et al.  Application of weak ferromagnetic BiFeO3 films as the photoelectrode material under visible-light irradiation , 2007 .

[40]  M. Alexe,et al.  Polarization reversal and capacitance-voltage characteristic of epitaxial Pb(Zr,Ti)O3 layers , 2005 .

[41]  Lutz Mädler,et al.  Nanoparticle synthesis at high production rates by flame spray pyrolysis , 2003 .

[42]  Jiale Xie,et al.  Bi-functional ferroelectric BiFeO3 passivated BiVO4 photoanode for efficient and stable solar water oxidation , 2017 .

[43]  M. Grätzel Photoelectrochemical cells : Materials for clean energy , 2001 .

[44]  Michael Grätzel,et al.  Photoelectrochemical cells , 2001, Nature.