A prevalent cancer susceptibility APOBEC3A hybrid allele bearing APOBEC3B 3′UTR enhances chromosomal DNA damage

Human APOBEC3A (A3A) cytidine deaminase is a host enzyme that can introduce mutations into chromosomal DNA. As APOBEC3B (A3B) encodes a C-terminal catalytic domain ~91% identical to A3A, we examined its genotoxic potential as well as that of a highly prevalent chimaeric A3A-A3B deletion allele (ΔA3B), which is linked to a higher odds ratio of developing breast, ovarian and liver cancer. Interestingly, breast cancer genomes from ΔA3B(-/-) patients show a higher overall mutation burden. Here it is shown that germline A3B can hypermutate nuclear DNA, albeit less efficiently than A3A. Chimaeric A3A mRNA resulting from ΔA3B was more stable, resulting in higher intracellular A3A levels and greater DNA damage. The cancer burden implied by the higher A3A levels could be considerable given the high penetration of the ΔA3B allele in South East Asia.

[1]  R. König,et al.  APOBEC3B and APOBEC3C Are Potent Inhibitors of Simian Immunodeficiency Virus Replication* , 2004, Journal of Biological Chemistry.

[2]  M. Weitzman,et al.  APOBEC3A can activate the DNA damage response and cause cell‐cycle arrest , 2011, EMBO reports.

[3]  S. Wain-Hobson,et al.  Extensive editing of a small fraction of human T-cell leukemia virus type 1 genomes by four APOBEC3 cytidine deaminases. , 2005, The Journal of general virology.

[4]  M. Malim,et al.  Defining APOBEC3 Expression Patterns in Human Tissues and Hematopoietic Cell Subsets , 2009, Journal of Virology.

[5]  A. Bhagwat,et al.  Efficient deamination of 5-methylcytosines in DNA by human APOBEC3A, but not by AID or APOBEC3G , 2012, Nucleic acids research.

[6]  A. Børresen-Dale,et al.  The landscape of cancer genes and mutational processes in breast cancer , 2012, Nature.

[7]  C. Schiffer,et al.  Methylcytosine and Normal Cytosine Deamination by the Foreign DNA Restriction Enzyme APOBEC3A* , 2012, The Journal of Biological Chemistry.

[8]  E. Eichler,et al.  Population Stratification of a Common APOBEC Gene Deletion Polymorphism , 2007, PLoS genetics.

[9]  Alberto Mantovani,et al.  Inflammation and cancer: back to Virchow? , 2001, The Lancet.

[10]  S. Wain-Hobson,et al.  Genetic Editing of HBV DNA by Monodomain Human APOBEC3 Cytidine Deaminases and the Recombinant Nature of APOBEC3G , 2009, PloS one.

[11]  M. Shimura,et al.  All APOBEC3 family proteins differentially inhibit LINE-1 retrotransposition , 2007, Nucleic acids research.

[12]  L. Coussens,et al.  Inflammation and cancer , 2002, Nature.

[13]  Steven A Roberts,et al.  Clustered and genome‐wide transient mutagenesis in human cancers: Hypermutation without permanent mutators or loss of fitness , 2014, BioEssays : news and reviews in molecular, cellular and developmental biology.

[14]  B. Cullen,et al.  Differential Sensitivity of Murine Leukemia Virus to APOBEC3-Mediated Inhibition Is Governed by Virion Exclusion , 2005, Journal of Virology.

[15]  I. Dunham,et al.  Psoriasis upregulated phorbolin-1 shares structural but not functional similarity to the mRNA-editing protein apobec-1. , 1999, The Journal of investigative dermatology.

[16]  S. Wain-Hobson,et al.  Erroneous identification of APOBEC3-edited chromosomal DNA in cancer genomics , 2014, British Journal of Cancer.

[17]  Rebecca M. McDougle,et al.  D316 is critical for the enzymatic activity and HIV-1 restriction potential of human and rhesus APOBEC3B. , 2013, Virology.

[18]  M. Stenglein,et al.  APOBEC3 proteins mediate the clearance of foreign DNA from human cells , 2010, Nature Structural &Molecular Biology.

[19]  A. Børresen-Dale,et al.  Mutational Processes Molding the Genomes of 21 Breast Cancers , 2012, Cell.

[20]  I. Dunham,et al.  An anthropoid-specific locus of orphan C to U RNA-editing enzymes on chromosome 22. , 2002, Genomics.

[21]  S. Wain-Hobson,et al.  Extensive editing of both hepatitis B virus DNA strands by APOBEC3 cytidine deaminases in vitro and in vivo. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[22]  S. Wain-Hobson,et al.  Human APOBEC3A Isoforms Translocate to the Nucleus and Induce DNA Double Strand Breaks Leading to Cell Stress and Death , 2013, PloS one.

[23]  Wei Lu,et al.  A common deletion in the APOBEC3 genes and breast cancer risk. , 2013, Journal of the National Cancer Institute.

[24]  J. Greeve,et al.  Effects of point mutations in the cytidine deaminase domains of APOBEC3B on replication and hypermutation of hepatitis B virus in vitro. , 2007, The Journal of general virology.

[25]  A. Børresen-Dale,et al.  COMPLEX LANDSCAPES OF SOMATIC REARRANGEMENT IN HUMAN BREAST CANCER GENOMES , 2009, Nature.

[26]  M. Goodman,et al.  A Biochemical Analysis Linking APOBEC3A to Disparate HIV-1 Restriction and Skin Cancer* , 2013, The Journal of Biological Chemistry.

[27]  Y. Miki,et al.  Identification of novel deletion polymorphisms in breast cancer. , 2008, International journal of oncology.

[28]  W. Brown,et al.  Quantitative profiling of the full APOBEC3 mRNA repertoire in lymphocytes and tissues: implications for HIV-1 restriction , 2010, Nucleic acids research.

[29]  N. A. Temiz,et al.  APOBEC3B is an enzymatic source of mutation in breast cancer , 2013, Nature.

[30]  N. Kadowaki,et al.  APOBEC3B can impair genomic stability by inducing base substitutions in genomic DNA in human cells , 2012, Scientific Reports.

[31]  S. Wain-Hobson,et al.  Recovery of APOBEC3-edited human immunodeficiency virus G->A hypermutants by differential DNA denaturation PCR. , 2005, The Journal of general virology.

[32]  Wei Zheng,et al.  APOBEC3 deletion polymorphism is associated with breast cancer risk among women of European ancestry. , 2013, Carcinogenesis.

[33]  David T. W. Jones,et al.  Signatures of mutational processes in human cancer , 2013, Nature.

[34]  W. Tan,et al.  Evidence of associations of APOBEC3B gene deletion with susceptibility to persistent HBV infection and hepatocellular carcinoma. , 2013, Human molecular genetics.

[35]  P. Pineau,et al.  Somatic hypermutation of human mitochondrial and nuclear DNA by APOBEC3 cytidine deaminases, a pathway for DNA catabolism , 2011, Proceedings of the National Academy of Sciences.

[36]  Adam P Butler,et al.  Association of a germline copy number polymorphism of APOBEC3A and APOBEC3B with burden of putative APOBEC-dependent mutations in breast cancer , 2014, Nature Genetics.

[37]  E. Birney,et al.  Patterns of somatic mutation in human cancer genomes , 2007, Nature.

[38]  S. Wain-Hobson,et al.  Efficient Deamination of 5-Methylcytidine and 5-Substituted Cytidine Residues in DNA by Human APOBEC3A Cytidine Deaminase , 2013, PloS one.

[39]  E. Birney,et al.  Patterns of somatic mutation in human cancer genomes , 2007, Nature.

[40]  Steven A. Roberts,et al.  An APOBEC cytidine deaminase mutagenesis pattern is widespread in human cancers , 2013, Nature Genetics.

[41]  S. Wain-Hobson,et al.  Orthologous mammalian APOBEC3A cytidine deaminases hypermutate nuclear DNA. , 2014, Molecular biology and evolution.

[42]  Peter A. Jones,et al.  The Epigenomics of Cancer , 2007, Cell.

[43]  V. Simon,et al.  APOBEC3A, APOBEC3B, and APOBEC3H Haplotype 2 Restrict Human T-Lymphotropic Virus Type 1 , 2012, Journal of Virology.