Effect of sample size on the maximum value distribution of fatigue driving forces in metals and alloys

[1]  M. T. Andani,et al.  A combined experimental and crystal plasticity study of grain size effects in magnesium alloys , 2023, Journal of Magnesium and Alloys.

[2]  J. Allison,et al.  PRISMS-Plasticity TM: An Open-Source Rapid Texture Evolution Analysis Pipeline , 2022, Integrating Materials and Manufacturing Innovation.

[3]  D. McDowell,et al.  Microstructure-Sensitive Modeling of Surface Roughness and Notch Effects on Extreme Value Fatigue Response , 2022, International Journal of Fatigue.

[4]  J. Allison,et al.  Deformation twinning and detwinning in extruded Mg-4Al: in-situ experiment and crystal plasticity simulation , 2022, International Journal of Plasticity.

[5]  D. McDowell,et al.  Simulated effects of sample size and grain neighborhood on the modeling of extreme value fatigue response , 2021, Acta Materialia.

[6]  J. Allison,et al.  Crystal Plasticity Finite Element Modeling of Extension Twinning in WE43 Mg Alloys: Calibration and Validation , 2021, Integrating Materials and Manufacturing Innovation.

[7]  D. McDowell,et al.  Effects of Boundary Conditions on Microstructure-Sensitive Fatigue Crystal Plasticity Analysis , 2021, Integrating Materials and Manufacturing Innovation.

[8]  D. McDowell,et al.  PRISMS-Fatigue computational framework for fatigue analysis in polycrystalline metals and alloys , 2021, npj Computational Materials.

[9]  M. Sangid,et al.  Examining metrics for fatigue life predictions of additively manufactured IN718 via crystal plasticity modeling including the role of simulation volume and microstructural constraints , 2020 .

[10]  D. McDowell,et al.  Prediction of maximum fatigue indicator parameters for duplex Ti–6Al–4V using extreme value theory , 2020 .

[11]  D. McDowell,et al.  Microstructure-sensitive computational multiaxial fatigue of Al 7075-T6 and duplex Ti-6Al-4V , 2020 .

[12]  J. Allison,et al.  Multiscale modeling of twinning and detwinning behavior of HCP polycrystals , 2020 .

[13]  D. McDowell,et al.  Microstructure-Sensitive Computational Estimates of Driving Forces for Surface Versus Subsurface Fatigue Crack Formation in Duplex Ti-6Al-4V and Al 7075-T6 , 2020, JOM.

[14]  Veera Sundararaghavan,et al.  PRISMS-Plasticity: An open-source crystal plasticity finite element software , 2019, Computational Materials Science.

[15]  K. Teferra,et al.  Maximum Value Distribution of Micromechanical Response Quantities , 2019, Journal of Engineering Mechanics.

[16]  B. Skallerud,et al.  Crystal plasticity modeling of microstructure influence on fatigue crack initiation in extruded Al6082-T6 with surface irregularities , 2018, International Journal of Fatigue.

[17]  D. McDowell,et al.  Sensitivity of polycrystal plasticity to slip system kinematic hardening laws for Al 7075-T6 , 2017 .

[18]  David L. McDowell,et al.  Failure of metals II: Fatigue , 2016 .

[19]  David L. McDowell,et al.  Recent developments in assessing microstructure-sensitive early stage fatigue of polycrystals , 2014 .

[20]  F. Dunne Fatigue crack nucleation: Mechanistic modelling across the length scales , 2014 .

[21]  M. Groeber,et al.  DREAM.3D: A Digital Representation Environment for the Analysis of Microstructure in 3D , 2014, Integrating Materials and Manufacturing Innovation.

[22]  N. Salajegheh Microstructure-sensitive weighted probability approach for modeling surface to bulk transition of high cycle fatigue failures dominated by primary inclusions , 2014 .

[23]  D. McDowell,et al.  Microstructure-sensitive HCF and VHCF simulations , 2013 .

[24]  W. Curtin,et al.  Discrete dislocation modeling of fracture in plastically anisotropic metals , 2013 .

[25]  David L. McDowell,et al.  Assessment of small fatigue crack growth driving forces in single crystals with and without slip bands , 2012, International Journal of Fracture.

[26]  David L. McDowell,et al.  Simulated microstructure-sensitive extreme value probabilities for high cycle fatigue of duplex Ti–6Al–4V , 2011 .

[27]  A. Kareem,et al.  Peak Factors for Non-Gaussian Load Effects Revisited , 2011 .

[28]  D. McDowell,et al.  Microstructure-sensitive computational modeling of fatigue crack formation , 2010 .

[29]  E. Vanmarcke,et al.  Random Fields: Analysis and Synthesis (Revised and Expanded New Edition) , 2010 .

[30]  D. McDowell,et al.  Microstructure-sensitive extreme value probabilities for high cycle fatigue of Ni-base superalloy IN100 , 2010 .

[31]  F. Dunne,et al.  On the mechanisms of fatigue facet nucleation in titanium alloys , 2008 .

[32]  Gerd Heber,et al.  A geometric approach to modeling microstructurally small fatigue crack formation: I. Probabilistic simulation of constituent particle cracking in AA 7075-T651 , 2008 .

[33]  David L. McDowell,et al.  Simulation-based strategies for microstructure-sensitive fatigue modeling , 2007 .

[34]  M. Grigoriu Simulation of stationary non-Gaussian translation processes , 1998 .

[35]  Ahsan Kareem,et al.  Analysis of Non-Gaussian Surge Response of Tension Leg Platforms Under Wind Loads , 1994 .

[36]  A. Fatemi,et al.  A CRITICAL PLANE APPROACH TO MULTIAXIAL FATIGUE DAMAGE INCLUDING OUT‐OF‐PHASE LOADING , 1988 .

[37]  Richard L. Smith Estimating tails of probability distributions , 1987 .

[38]  M. Grigoriu Crossings of non-gaussian translation processes , 1984 .

[39]  A G Davenport,et al.  NOTE ON THE DISTRIBUTION OF THE LARGEST VALUE OF A RANDOM FUNCTION WITH APPLICATION TO GUST LOADING. , 1964 .

[40]  J. Kiefer,et al.  Asymptotic Minimax Character of the Sample Distribution Function and of the Classical Multinomial Estimator , 1956 .

[41]  Huseyin Sehitoglu,et al.  A physically based fatigue model for prediction of crack initiation from persistent slip bands in polycrystals , 2011 .

[42]  D. McDowell,et al.  Polycrystal orientation distribution effects on microslip in high cycle fatigue , 2003 .

[43]  M. B. Priestley,et al.  A Test for Non‐Stationarity of Time‐Series , 1969 .