Computing global structural balance in large-scale signed social networks

Structural balance theory affirms that signed social networks (i.e., graphs whose signed edges represent friendly/hostile interactions among individuals) tend to be organized so as to avoid conflictual situations, corresponding to cycles of negative parity. Using an algorithm for ground-state calculation in large-scale Ising spin glasses, in this paper we compute the global level of balance of very large online social networks and verify that currently available networks are indeed extremely balanced. This property is explainable in terms of the high degree of skewness of the sign distributions on the nodes of the graph. In particular, individuals linked by a large majority of negative edges create mostly “apparent disorder,” rather than true “frustration.”

[1]  F. Heider Attitudes and cognitive organization. , 1946, The Journal of psychology.

[2]  F. Harary,et al.  STRUCTURAL BALANCE: A GENERALIZATION OF HEIDER'S THEORY1 , 1977 .

[3]  Frank Harary,et al.  A matrix criterion for structural balance , 1960 .

[4]  Frank Harary,et al.  A simple algorithm to detect balance in signed graphs , 1980, Math. Soc. Sci..

[5]  F. Barahona On the computational complexity of Ising spin glass models , 1982 .

[6]  John S. Maybee,et al.  An algorithm for identifying Morishima and anti-Morishima matrices and balanced digraphs , 1983 .

[7]  Thomas Zaslavsky Signed graphs: To: T. Zaslausky, Discrete Appl. Math 4 (1982) 47-74 , 1983, Discret. Appl. Math..

[8]  Gerard Toulouse,et al.  Theory of the frustration effect in spin glasses: I , 1986 .

[9]  K. Binder,et al.  Spin glasses: Experimental facts, theoretical concepts, and open questions , 1986 .

[10]  Thomas M. Cover,et al.  Elements of Information Theory (Wiley Series in Telecommunications and Signal Processing) , 2006 .

[11]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[12]  David P. Williamson,et al.  Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.

[13]  Serge Galam,et al.  Fragmentation versus stability in bimodal coalitions , 1996 .

[14]  Albert,et al.  Topology of evolving networks: local events and universality , 2000, Physical review letters.

[15]  Heiko Rieger,et al.  Optimization algorithms in physics , 2001 .

[16]  S. Shen-Orr,et al.  Networks Network Motifs : Simple Building Blocks of Complex , 2002 .

[17]  Panos M. Pardalos,et al.  Randomized heuristics for the Max-Cut problem , 2002, Optim. Methods Softw..

[18]  Yin Zhang,et al.  Rank-Two Relaxation Heuristics for MAX-CUT and Other Binary Quadratic Programs , 2002, SIAM J. Optim..

[19]  S. Shen-Orr,et al.  Network motifs: simple building blocks of complex networks. , 2002, Science.

[20]  H. Rieger,et al.  New Optimization Algorithms in Physics , 2004 .

[21]  Ramanathan V. Guha,et al.  Propagation of trust and distrust , 2004, WWW '04.

[22]  S Redner,et al.  Dynamics of social balance on networks. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  Marc Mézard,et al.  The theoretical capacity of the Parity Source Coder , 2005, ArXiv.

[24]  M E J Newman,et al.  Modularity and community structure in networks. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[25]  Panos M. Pardalos,et al.  Encyclopedia of Optimization , 2006 .

[26]  Mark E. J. Newman,et al.  Structure and Dynamics of Networks , 2009 .

[27]  Paul Resnick,et al.  Follow the reader: filtering comments on slashdot , 2007, CHI.

[28]  Stanley Wasserman,et al.  Social Network Analysis: Methods and Applications , 1994, Structural analysis in the social sciences.

[29]  F. Vega-Redondo Complex Social Networks: Econometric Society Monographs , 2007 .

[30]  A. Barabasi,et al.  Quantifying social group evolution , 2007, Nature.

[31]  F. Harary On the measurement of structural balance , 2007 .

[32]  Tad Hogg,et al.  Multiple Relationship Types in Online Communities and Social Networks , 2008, AAAI Spring Symposium: Social Information Processing.

[33]  Robert E. Kraut,et al.  Mopping up: modeling wikipedia promotion decisions , 2008, CSCW.

[34]  Christian Bauckhage,et al.  The slashdot zoo: mining a social network with negative edges , 2009, WWW.

[35]  Daniel J. Brass,et al.  Network Analysis in the Social Sciences , 2009, Science.

[36]  Steven H Strogatz,et al.  Energy landscape of social balance. , 2009, Physical review letters.

[37]  M. Mézard,et al.  Information, Physics, and Computation , 2009 .

[38]  Michael Szell,et al.  Multirelational organization of large-scale social networks in an online world , 2010, Proceedings of the National Academy of Sciences.

[39]  J. Kleinberg,et al.  Networks, Crowds, and Markets , 2010 .

[40]  G Iacono,et al.  Determining the distance to monotonicity of a biological network: a graph-theoretical approach. , 2010, IET systems biology.

[41]  Jure Leskovec,et al.  Signed networks in social media , 2010, CHI.

[42]  Sahin Albayrak,et al.  Spectral Analysis of Signed Graphs for Clustering, Prediction and Visualization , 2010, SDM.

[43]  E. David,et al.  Networks, Crowds, and Markets: Reasoning about a Highly Connected World , 2010 .

[44]  Martin J. Wainwright,et al.  Lossy Source Compression Using Low-Density Generator Matrix Codes: Analysis and Algorithms , 2010, IEEE Transactions on Information Theory.

[45]  Xin-She Yang Optimization Algorithms , 2011, Computational Optimization, Methods and Algorithms.

[46]  Desney S. Tan,et al.  Proceedings of the 2008 Conference on Human Factors in Computing Systems, CHI 2008, 2008, Florence, Italy, April 5-10, 2008 , 2005, CHI 2008.

[47]  Aravind Srinivasan,et al.  Local balancing influences global structure in social networks , 2011, Proceedings of the National Academy of Sciences.

[48]  Chris Arney,et al.  Networks, Crowds, and Markets: Reasoning about a Highly Connected World (Easley, D. and Kleinberg, J.; 2010) [Book Review] , 2013, IEEE Technology and Society Magazine.