Correlation Analysis for Exploring Multivariate Data Sets

Correlation analysis is of great significance for exploring the multivariate data sets as it helps researchers toward an in-depth understanding of the complex interactions and relationships among variables. In this paper, we propose a correlation analysis method that identifies salient scalars for multivariate data exploration. We exploit specific mutual information metric to measure the information overlap and analyze the relationships between one scalar and other variables. Moreover, we define the information flow and introduce another metric, influence to quantify the associations among scalars of different variables. Furthermore, we integrate these two information metrics and construct a surprise-influence map for users’ interaction to identify the salient scalars. By investigating the relationships among these salient scalars, we analyze the correlations among variables. We demonstrate the applicability and effectiveness of our proposed method by applying it to different data sets.

[1]  Vijay Natarajan,et al.  A Gradient‐Based Comparison Measure for Visual analysis of Multifield Data , 2011, Comput. Graph. Forum.

[2]  Hans-Peter Seidel,et al.  Multifield-Graphs: An Approach to Visualizing Correlations in Multifield Scalar Data , 2006, IEEE Transactions on Visualization and Computer Graphics.

[3]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[4]  Das Amrita,et al.  Mining Association Rules between Sets of Items in Large Databases , 2013 .

[5]  Mateu Sbert,et al.  Multimodal Data Fusion Based on Mutual Information , 2012, IEEE Transactions on Visualization and Computer Graphics.

[6]  Han-Wei Shen,et al.  An Information-Aware Framework for Exploring Multivariate Data Sets , 2013, IEEE Transactions on Visualization and Computer Graphics.

[7]  Dezhan Qu,et al.  Correlation Visualization of Time-Varying Patterns for Multi-Variable Data , 2016, IEEE Access.

[8]  Daniel M. Romero,et al.  Influence and passivity in social media , 2010, ECML/PKDD.

[9]  Amy Henderson,et al.  The ParaView Guide: A Parallel Visualization Application , 2004 .

[10]  Matthew O. Ward,et al.  Analysis Guided Visual Exploration of Multivariate Data , 2007, 2007 IEEE Symposium on Visual Analytics Science and Technology.

[11]  D. Watts,et al.  Influentials, Networks, and Public Opinion Formation , 2007 .

[12]  Pak Chung Wong,et al.  30 Years of Multidimensional Multivariate Visualization , 1994, Scientific Visualization.

[13]  Ray W. Grout,et al.  Analyzing information transfer in time-varying multivariate data , 2011, 2011 IEEE Pacific Visualization Symposium.

[14]  Alfred Inselberg,et al.  Parallel coordinates: a tool for visualizing multi-dimensional geometry , 1990, Proceedings of the First IEEE Conference on Visualization: Visualization `90.

[15]  Mateu Sbert,et al.  Importance-Driven Focus of Attention , 2006, IEEE Transactions on Visualization and Computer Graphics.

[16]  Helwig Hauser,et al.  Visualization of Multi‐Variate Scientific Data , 2009, Comput. Graph. Forum.

[17]  Stefan Bruckner,et al.  Volume Analysis Using Multimodal Surface Similarity , 2011, IEEE Transactions on Visualization and Computer Graphics.

[18]  Sung-Hyuk Cha Comprehensive Survey on Distance/Similarity Measures between Probability Density Functions , 2007 .

[19]  Helwig Hauser,et al.  Visualization and Visual Analysis of Multifaceted Scientific Data: A Survey , 2013, IEEE Transactions on Visualization and Computer Graphics.

[20]  Peter Filzmoser,et al.  Brushing Dimensions - A Dual Visual Analysis Model for High-Dimensional Data , 2011, IEEE Transactions on Visualization and Computer Graphics.

[21]  M R DeWeese,et al.  How to measure the information gained from one symbol. , 1999, Network.

[22]  Alfred Inselberg,et al.  Multidimensional detective , 1997, Proceedings of VIZ '97: Visualization Conference, Information Visualization Symposium and Parallel Rendering Symposium.

[23]  Xiaoru Yuan,et al.  Ieee Transactions on Visualization and Computer Graphics 1 Scalable Multivariate Volume Visualization and Analysis Based on Dimension Projection and Parallel Coordinates , 2022 .

[24]  Daniel A. Keim,et al.  Subspace search and visualization to make sense of alternative clusterings in high-dimensional data , 2012, 2012 IEEE Conference on Visual Analytics Science and Technology (VAST).

[25]  Kenneth I. Joy,et al.  Variable Interactions in Query-Driven Visualization , 2007, IEEE Transactions on Visualization and Computer Graphics.

[26]  Alfred Inselberg,et al.  The plane with parallel coordinates , 1985, The Visual Computer.

[27]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[28]  Pierre Dragicevic,et al.  Rolling the Dice: Multidimensional Visual Exploration using Scatterplot Matrix Navigation , 2008, IEEE Transactions on Visualization and Computer Graphics.

[29]  Klaus Mueller,et al.  Ieee Transactions on Visualization and Computer Graphics 1 Visual Correlation Analysis of Numerical and Categorical Data on the Correlation Map , 2022 .

[30]  Xiaotong Liu,et al.  Pointwise information guided visual analysis of time-varying multi-fields , 2017, SIGGRAPH Asia Symposium on Visualization.

[31]  Gerik Scheuermann,et al.  Multifield visualization using local statistical complexity , 2007, IEEE Transactions on Visualization and Computer Graphics.

[32]  P. Touchette,et al.  A scatter plot for identifying stimulus control of problem behavior. , 1985, Journal of applied behavior analysis.

[33]  Gerik Scheuermann,et al.  Brushing of Attribute Clouds for the Visualization of Multivariate Data , 2008, IEEE Transactions on Visualization and Computer Graphics.

[34]  Han-Wei Shen,et al.  Visualization and Exploration of Temporal Trend Relationships in Multivariate Time-Varying Data , 2009, IEEE Transactions on Visualization and Computer Graphics.

[35]  Stefan Bruckner,et al.  Eurographics/ Ieee-vgtc Symposium on Visualization 2010 Isosurface Similarity Maps , 2022 .

[36]  Kwan-Liu Ma,et al.  Static correlation visualization for large time-varying volume data , 2011, 2011 IEEE Pacific Visualization Symposium.