Physiopathology of Malaria During Pregnancy: Adhesion and Sequestration Phenotypes of Malaria Infection

[1]  P. Bigey,et al.  Differential adhesion-inhibitory patterns of antibodies raised against two major variants of the NTS-DBL2X region of VAR2CSA. , 2013, Vaccine.

[2]  Joseph D. Smith,et al.  Severe malaria is associated with parasite binding to endothelial protein C receptor , 2013, Nature.

[3]  Ivo Müeller,et al.  Rosetting in Plasmodium vivax: A Cytoadhesion Phenotype Associated with Anaemia , 2013, PLoS neglected tropical diseases.

[4]  S. Epiphanio,et al.  Placental Histopathological Changes Associated with Plasmodium vivax Infection during Pregnancy , 2013, PLoS neglected tropical diseases.

[5]  U. d’Alessandro,et al.  Malaria in pregnancy. , 2013, Annals of tropical medicine and parasitology.

[6]  P. Bigey,et al.  First-trimester Plasmodium falciparum infections display a typical "placental" phenotype. , 2012, The Journal of infectious diseases.

[7]  Thomas S. Rask,et al.  Plasmodium falciparum erythrocyte membrane protein 1 domain cassettes 8 and 13 are associated with severe malaria in children , 2012, Proceedings of the National Academy of Sciences.

[8]  N. Day,et al.  Plasmodium vivax Adherence to Placental Glycosaminoglycans , 2012, PloS one.

[9]  H. D. del Portillo,et al.  Functional analysis of Plasmodium vivax VIR proteins reveals different subcellular localizations and cytoadherence to the ICAM‐1 endothelial receptor , 2012, Cellular microbiology.

[10]  D. Scherman,et al.  Identification of Id1-DBL2X of VAR2CSA as a key domain inducing highly inhibitory and cross-reactive antibodies. , 2012, Vaccine.

[11]  Esther G. L. Koh,et al.  A reliable ex vivo invasion assay of human reticulocytes by Plasmodium vivax , 2011, Blood.

[12]  T. Theander,et al.  High efficacy of anti DBL4ɛ-VAR2CSA antibodies in inhibition of CSA-binding Plasmodium falciparum-infected erythrocytes from pregnant women. , 2011, Vaccine.

[13]  T. Theander,et al.  Hierarchical, Domain Type-Specific Acquisition of Antibodies to Plasmodium falciparum Erythrocyte Membrane Protein 1 in Tanzanian Children , 2010, Infection and Immunity.

[14]  H. D. del Portillo,et al.  On the cytoadhesion of Plasmodium vivax-infected erythrocytes. , 2010, The Journal of infectious diseases.

[15]  L. Hviid,et al.  Of mice and women: rodent models of placental malaria. , 2010, Trends in parasitology.

[16]  G. Wunderlich,et al.  The South American Plasmodium falciparum var gene repertoire is limited, highly shared and possibly lacks several antigenic types. , 2010, Gene.

[17]  M. Wahlgren,et al.  Simultaneous transcription of duplicated var2csa gene copies in individual Plasmodium falciparum parasites , 2009, Genome Biology.

[18]  L. Gonçalves,et al.  Pregnancy Outcome and Placenta Pathology in Plasmodium berghei ANKA Infected Mice Reproduce the Pathogenesis of Severe Malaria in Pregnant Women , 2008, PloS one.

[19]  S. Meshnick,et al.  Malaria in pregnancy: linking immunity and pathogenesis to prevention. , 2007, The American journal of tropical medicine and hygiene.

[20]  Philip Awadalla,et al.  Global genetic diversity and evolution of var genes associated with placental and severe childhood malaria. , 2006, Molecular and biochemical parasitology.

[21]  N. Hall,et al.  Comparative genomics of malaria parasites. , 2005, Current opinion in genetics & development.

[22]  T. Theander,et al.  High level of var2csa transcription by Plasmodium falciparum isolated from the placenta. , 2005, The Journal of infectious diseases.

[23]  P. Deloron,et al.  Variable adhesion abilities and overlapping antigenic properties in placental Plasmodium falciparum isolates. , 2004, The Journal of infectious diseases.

[24]  Wenjiang J. Fu,et al.  Differentiating the pathologies of cerebral malaria by postmortem parasite counts , 2004, Nature Medicine.

[25]  M. Fried,et al.  Plasmodium falciparum adhesion in the placenta. , 2003, Current opinion in microbiology.

[26]  Thomas Lavstsen,et al.  Selective upregulation of a single distinctly structured var gene in chondroitin sulphate A‐adhering Plasmodium falciparum involved in pregnancy‐associated malaria , 2003, Molecular microbiology.

[27]  G. Rook,et al.  The importance of models of infection in the study of disease resistance. , 2002, Trends in microbiology.

[28]  Ogobara K. Doumbo,et al.  The pathogenic basis of malaria , 2002, Nature.

[29]  M. Molyneux,et al.  Rosette formation by clinical isolates of Plasmodium falciparum in serum-free medium. , 2000, Transactions of the Royal Society of Tropical Medicine and Hygiene.

[30]  François Nosten,et al.  Maternal antibodies block malaria , 1998, Nature.

[31]  Kevin Marsh,et al.  Parasite antigens on the infected red cell surface are targets for naturally acquired immunity to malaria , 1998, Nature Medicine.

[32]  Patrick E. Duffy,et al.  Adherence of Plasmodium falciparum to Chondroitin Sulfate A in the Human Placenta , 1996, Science.

[33]  C. Newbold,et al.  Plasmodium falciparum rosetting is associated with malaria severity in Kenya , 1995, Infection and immunity.

[34]  J. W. Field,et al.  The Microscopical Diagnosis of Human Malaria. I. A Morphological Study of the Erythrocytic Parasites in Thick Blood Films , 1964 .

[35]  C. Menéndez,et al.  The burden of malaria in pregnancy in malaria-endemic areas. , 2001, The American journal of tropical medicine and hygiene.

[36]  B. Brabin An analysis of malaria in pregnancy in Africa. , 1983, Bulletin of the World Health Organization.