Asymptotic safety, emergence and minimal length

There seems to be a common prejudice that asymptotic safety is either incompatible with, or at best unrelated to, the other topics in the title. This is not the case. In fact, we show that (1) the existence of a fixed point with suitable properties is a promising way of deriving emergent properties of gravity, and (2) there is a sense in which asymptotic safety implies a minimal length. In doing so we also discuss possible signatures of asymptotic safety in scattering experiments.

[1]  T. Padmanabhan Classical and quantum thermodynamics of horizons in spherically symmetric spacetimes , 2002 .

[2]  O. Zanusso,et al.  One loop beta functions and fixed points in higher derivative sigma models , 2009, 0910.0851.

[3]  Christoph Rahmede,et al.  Investigating the ultraviolet properties of gravity with a Wilsonian renormalization group equation , 2008, 0805.2909.

[4]  Christoph Rahmede,et al.  ULTRAVIOLET PROPERTIES OF f(R)-GRAVITY , 2007, 0705.1769.

[5]  M. Niedermaier,et al.  Gravitational fixed points from perturbation theory. , 2009, Physical review letters.

[6]  M. Visser,et al.  Analogue Gravity , 2005, Living reviews in relativity.

[7]  Martin Reuter,et al.  Nonperturbative evolution equation for quantum gravity , 1998 .

[8]  L. Zambelli,et al.  Gravitational corrections to Yukawa systems , 2009, 0904.0938.

[9]  R. Percacci,et al.  Asymptotic safety of gravity coupled to matter , 2003, hep-th/0304222.

[10]  A. Sakharov SPECIAL ISSUE: Vacuum quantum fluctuations in curved space and the theory of gravitation , 1991 .

[11]  D. Litim Optimized renormalization group flows , 2001, hep-th/0103195.

[12]  S. Adler Einstein Gravity as a Symmetry Breaking Effect in Quantum Field Theory , 1982 .

[13]  S. Giddings,et al.  The Gravitational S-matrix , 2009, 0908.0004.

[14]  Frank Saueressig,et al.  ASYMPTOTIC SAFETY IN HIGHER-DERIVATIVE GRAVITY , 2009, 0901.2984.

[15]  Martin Reuter,et al.  Effective Potential of the Conformal Factor: Gravitational Average Action and Dynamical Triangulations , 2008, 0806.3907.

[16]  On the ultraviolet behaviour of Newton's constant , 2004, hep-th/0401071.

[17]  R. Percacci,et al.  Modified dispersion relations from the renormalization group of gravity , 2006, gr-qc/0607030.

[18]  Martin Reuter,et al.  A minimal length from the cutoff modes in asymptotically safe quantum gravity , 2006 .

[19]  D. Litim Fixed points of quantum gravity , 2003, hep-th/0312114.

[20]  Wataru Souma,et al.  Non-Trivial Ultraviolet Fixed Point in Quantum Gravity , 1999, hep-th/9907027.

[21]  Joseph Polchinski,et al.  Renormalization and effective lagrangians , 1984 .

[22]  Martin Reuter,et al.  Bimetric Truncations for Quantum Einstein Gravity and Asymptotic Safety , 2009, 0907.2617.

[23]  Tim R. Morris Derivative expansion of the exact renormalization group , 1994 .

[24]  H. Gies,et al.  Asymptotically free scalar curvature-ghost coupling in quantum Einstein gravity , 2009, 0907.1828.

[25]  Roberto Percacci,et al.  The running gravitational couplings , 1998 .

[26]  M. Reuter,et al.  Ultraviolet fixed point and generalized flow equation of quantum gravity , 2001 .

[27]  Alfio Bonanno,et al.  Entropy signature of the running cosmological constant , 2007, 0706.0174.

[28]  Herbert W. Hamber,et al.  Quantum gravity on the lattice , 2009, 0901.0964.

[29]  R. Percacci,et al.  Fixed points of nonlinear sigma models in d > 2 , 2008, 0810.0715.

[30]  A. Houghton,et al.  Renormalization group equation for critical phenomena , 1973 .

[31]  Roberto Percacci,et al.  Fixed points of higher-derivative gravity. , 2006, Physical review letters.

[32]  Frank Saueressig,et al.  Taming perturbative divergences in asymptotically safe gravity , 2009, 0902.4630.

[33]  F. Saueressig,et al.  Renormalization group flow of quantum gravity in the Einstein-Hilbert truncation , 2002 .

[34]  S. Hawking,et al.  General Relativity; an Einstein Centenary Survey , 1979 .

[35]  R. Percacci,et al.  Conformally reduced quantum gravity revisited , 2009, 0904.2510.

[36]  Christoph Rahmede,et al.  Renormalization group flow in scalar-tensor theories: II , 2009, 0911.0394.

[37]  Frank Saueressig,et al.  On the Renormalization Group Flow of Gravity , 2007, 0712.0445.

[38]  M. Reuter,et al.  Is quantum Einstein gravity nonperturbatively renormalizable , 2002 .

[39]  S. Adler Erratum: Einstein gravity as a symmetry-breaking effect in quantum field theory , 1983 .

[40]  R. Percacci Further evidence for a gravitational fixed point , 2005, hep-th/0511177.

[41]  C. Wetterich,et al.  Exact evolution equation for the effective potential , 1993, 1710.05815.

[42]  M. Reuter,et al.  Flow equation of quantum Einstein gravity in a higher derivative truncation , 2002 .

[43]  Martin Reuter,et al.  Running gauge coupling in asymptotically safe quantum gravity , 2009, 0910.4938.

[44]  C. Duhr,et al.  The two-loop hexagon Wilson loop in $ \mathcal{N} = 4 $ SYM , 2010, 1003.1702.

[45]  M. Niedermaier,et al.  The Asymptotic Safety Scenario in Quantum Gravity , 2006, Living reviews in relativity.

[46]  Max Niedermaier,et al.  Gravitational fixed points and asymptotic safety from perturbation theory , 2010 .

[47]  John E. Roberts,et al.  The quantum structure of spacetime at the Planck scale and quantum fields , 1995, hep-th/0303037.

[48]  M. Reuter,et al.  Quantum gravity at astrophysical distances , 2004 .

[49]  Fixed points of quantum gravity in extra dimensions , 2006, hep-th/0602203.

[50]  Martin Reuter,et al.  Conformal sector of quantum Einstein gravity in the local potential approximation: Non-Gaussian fixed point and a phase of unbroken diffeomorphism invariance , 2008, 0804.1475.

[51]  Reconstructing the universe , 2005, hep-th/0505154.

[52]  Jacobson,et al.  Thermodynamics of spacetime: The Einstein equation of state. , 1995, Physical review letters.

[53]  K. Wilson The renormalization group: Critical phenomena and the Kondo problem , 1975 .

[54]  The renormalization group, systems of units and the hierarchy problem , 2004, hep-th/0409199.