Functional Genomic Landscape of Human Breast Cancer Drivers, Vulnerabilities, and Resistance

[1]  D. Bates,et al.  Linear Mixed-Effects Models using 'Eigen' and S4 , 2015 .

[2]  Sarah J. Kurley,et al.  The spliceosome is a therapeutic vulnerability in MYC-driven cancer , 2015, Nature.

[3]  N. Sinha,et al.  Therapeutic targets of triple‐negative breast cancer: a review , 2015, British journal of pharmacology.

[4]  C. Lefebvre,et al.  Kinase and BET Inhibitors Together Clamp Inhibition of PI3K Signaling and Overcome Resistance to Therapy. , 2015, Cancer cell.

[5]  M. Mottolese,et al.  ATM kinase sustains HER2 tumorigenicity in breast cancer , 2014, Nature Communications.

[6]  S. Davis,et al.  Dual inhibition of HDAC and EGFR signaling with CUDC-101 induces potent suppression of tumor growth and metastasis in anaplastic thyroid cancer , 2015, Oncotarget.

[7]  Sophia Rabe-Hesketh,et al.  Weakly Informative Prior for Point Estimation of Covariance Matrices in Hierarchical Models , 2015 .

[8]  Sohita Dhillon Palbociclib: First Global Approval , 2015, Drugs.

[9]  Bernd Rinn,et al.  Simultaneous analysis of large-scale RNAi screens for pathogen entry , 2014, BMC Genomics.

[10]  D. Pe’er,et al.  Integration of Genomic Data Enables Selective Discovery of Breast Cancer Drivers , 2014, Cell.

[11]  L. Fanning,et al.  p38δ MAPK: Emerging Roles of a Neglected Isoform , 2014, International journal of cell biology.

[12]  Q. Dou,et al.  Overview of proteasome inhibitor-based anti-cancer therapies: perspective on bortezomib and second generation proteasome inhibitors versus future generation inhibitors of ubiquitin-proteasome system. , 2014, Current cancer drug targets.

[13]  D. Bates,et al.  Fitting Linear Mixed-Effects Models Using lme4 , 2014, 1406.5823.

[14]  Junwei Shi,et al.  The mechanisms behind the therapeutic activity of BET bromodomain inhibition. , 2014, Molecular cell.

[15]  J. Moffat,et al.  Measuring error rates in genomic perturbation screens: gold standards for human functional genomics , 2014, bioRxiv.

[16]  Charity W. Law,et al.  voom: precision weights unlock linear model analysis tools for RNA-seq read counts , 2014, Genome Biology.

[17]  S. Elledge,et al.  Cumulative Haploinsufficiency and Triplosensitivity Drive Aneuploidy Patterns and Shape the Cancer Genome , 2013, Cell.

[18]  D. Pan,et al.  Epithelial growth factor receptor-activated nuclear factor κB signaling and its role in epithelial growth factor receptor-associated tumors. , 2013, Cancer journal.

[19]  Laura M. Heiser,et al.  Modeling precision treatment of breast cancer , 2013, Genome Biology.

[20]  J. Gray,et al.  Glutamine sensitivity analysis identifies the xCT antiporter as a common triple-negative breast tumor therapeutic target. , 2013, Cancer cell.

[21]  Joshua F. McMichael,et al.  DGIdb - Mining the druggable genome , 2013, Nature Methods.

[22]  Marc L. Mendillo,et al.  A genome-wide siRNA screen identifies proteasome addiction as a vulnerability of basal-like triple-negative breast cancer cells. , 2013, Cancer cell.

[23]  R. Schiff,et al.  PDEF promotes luminal differentiation and acts as a survival factor for ER-positive breast cancer cells. , 2013, Cancer cell.

[24]  Andrea Sottoriva,et al.  The shaping and functional consequences of the microRNA landscape in breast cancer , 2013, Nature.

[25]  P. Kaiser,et al.  Set them free: F-box protein exchange by Cand1 , 2013, Cell Research.

[26]  Pablo Tamayo,et al.  ATARiS: Computational quantification of gene suppression phenotypes from multisample RNAi screens , 2013, Genome research.

[27]  Sophia Rabe-Hesketh,et al.  A Nondegenerate Penalized Likelihood Estimator for Variance Parameters in Multilevel Models , 2013, Psychometrika.

[28]  S. Grant,et al.  Dual inhibition of Bcl-2 and Bcl-xL strikingly enhances PI3K inhibition-induced apoptosis in human myeloid leukemia cells through a GSK3- and Bim-dependent mechanism. , 2013, Cancer Research.

[29]  Emmanuel Barillot,et al.  Polo-like kinase 1: a potential therapeutic option in combination with conventional chemotherapy for the management of patients with triple-negative breast cancer. , 2013, Cancer research.

[30]  Steven J. M. Jones,et al.  Comprehensive molecular portraits of human breast tumours , 2013 .

[31]  F. Al-amran,et al.  Expression of IL-32 modulates NF-κB and p38 MAP kinase pathways in human esophageal cancer. , 2013, Cytokine.

[32]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[33]  J. Foekens,et al.  miRNA expression profiling of 51 human breast cancer cell lines reveals subtype and driver mutation-specific miRNAs , 2013, Breast Cancer Research.

[34]  Jill P. Mesirov,et al.  Cancer Vulnerabilities Unveiled by Genomic Loss , 2012, Cell.

[35]  Steven J. M. Jones,et al.  Comprehensive molecular portraits of human breast tumors , 2012, Nature.

[36]  M. Meyerson,et al.  Recurrent Hemizygous Deletions in Cancers May Optimize Proliferative Potential , 2012, Science.

[37]  E. Dmitrovsky,et al.  Evidence for the Ubiquitin Protease UBP43 as an Antineoplastic Target , 2012, Molecular Cancer Therapeutics.

[38]  Irmtraud M. Meyer,et al.  The clonal and mutational evolution spectrum of primary triple-negative breast cancers , 2012, Nature.

[39]  A. Børresen-Dale,et al.  The landscape of cancer genes and mutational processes in breast cancer , 2012, Nature.

[40]  A. Sivachenko,et al.  Sequence analysis of mutations and translocations across breast cancer subtypes , 2012, Nature.

[41]  F. Markowetz,et al.  The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups , 2012, Nature.

[42]  Joshua F. McMichael,et al.  Whole Genome Analysis Informs Breast Cancer Response to Aromatase Inhibition , 2012, Nature.

[43]  Chi V Dang,et al.  MYC on the Path to Cancer , 2012, Cell.

[44]  Adam A. Margolin,et al.  The Cancer Cell Line Encyclopedia enables predictive modeling of anticancer drug sensitivity , 2012, Nature.

[45]  Wenjun Guo,et al.  Slug and Sox9 Cooperatively Determine the Mammary Stem Cell State , 2012, Cell.

[46]  Gordon B Mills,et al.  Inhibition of PI3K/mTOR leads to adaptive resistance in matrix-attached cancer cells. , 2012, Cancer cell.

[47]  Kevin R Brown,et al.  Essential gene profiles in breast, pancreatic, and ovarian cancer cells. , 2012, Cancer discovery.

[48]  Xi Chen,et al.  TNBCtype: A Subtyping Tool for Triple-Negative Breast Cancer , 2012, Cancer informatics.

[49]  J. Mesirov,et al.  Systematic investigation of genetic vulnerabilities across cancer cell lines reveals lineage-specific dependencies in ovarian cancer , 2011, Proceedings of the National Academy of Sciences.

[50]  X. Chen,et al.  Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. , 2011, The Journal of clinical investigation.

[51]  Jaak Vilo,et al.  g:Profiler—a web server for functional interpretation of gene lists (2011 update) , 2011, Nucleic Acids Res..

[52]  Benjamin J. Raphael,et al.  Integrated Genomic Analyses of Ovarian Carcinoma , 2011, Nature.

[53]  A comprehensive platform for highly multiplexed mammalian functional genetic screens , 2011, BMC Genomics.

[54]  Fang Yu,et al.  Kruppel-like factor 4 (KLF4) is required for maintenance of breast cancer stem cells and for cell migration and invasion , 2010, Oncogene.

[55]  Gary D Bader,et al.  Enrichment Map: A Network-Based Method for Gene-Set Enrichment Visualization and Interpretation , 2010, PloS one.

[56]  William B. Smith,et al.  Selective inhibition of BET bromodomains , 2010, Nature.

[57]  Jason I. Herschkowitz,et al.  Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer , 2010, Breast Cancer Research.

[58]  Pedro M. Valero-Mora,et al.  ggplot2: Elegant Graphics for Data Analysis , 2010 .

[59]  A. Ashworth,et al.  Breast cancer molecular profiling with single sample predictors: a retrospective analysis. , 2010, The Lancet. Oncology.

[60]  Elgene Lim,et al.  Open Access Research Article Transcriptome Analyses of Mouse and Human Mammary Cell Subpopulations Reveal Multiple Conserved Genes and Pathways , 2022 .

[61]  Hans Clevers,et al.  Distinct gene mutation profiles among luminal-type and basal-type breast cancer cell lines , 2010, Breast Cancer Research and Treatment.

[62]  Hadley Wickham,et al.  ggplot2 - Elegant Graphics for Data Analysis (2nd Edition) , 2017 .

[63]  D. Hunter,et al.  mixtools: An R Package for Analyzing Mixture Models , 2009 .

[64]  Steven J. M. Jones,et al.  Circos: an information aesthetic for comparative genomics. , 2009, Genome research.

[65]  Ben S. Wittner,et al.  Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1 , 2009, Nature.

[66]  Jeffrey M. Rosen,et al.  Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features , 2009, Proceedings of the National Academy of Sciences.

[67]  John D. Minna,et al.  Molecular Profiling of Breast Cancer Cell Lines Defines Relevant Tumor Models and Provides a Resource for Cancer Gene Discovery , 2009, PloS one.

[68]  Nicholas J. Wang,et al.  Characterization of a naturally occurring breast cancer subset enriched in epithelial-to-mesenchymal transition and stem cell characteristics. , 2009, Cancer research.

[69]  A. Nobel,et al.  Supervised risk predictor of breast cancer based on intrinsic subtypes. , 2009, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[70]  P. Mehlen,et al.  EphrinB3 is an anti-apoptotic ligand that inhibits the dependence receptor functions of EphA4 receptors during adult neurogenesis. , 2009, Biochimica et biophysica acta.

[71]  A. Krasnitz,et al.  An Oncogenomics-Based In Vivo RNAi Screen Identifies Tumor Suppressors in Liver Cancer , 2008, Cell.

[72]  Clifford A. Meyer,et al.  FoxA1 Translates Epigenetic Signatures into Enhancer-Driven Lineage-Specific Transcription , 2008, Cell.

[73]  R. König,et al.  A probability-based approach for the analysis of large-scale RNAi screens , 2007, Nature Methods.

[74]  Cécile Proust-Lima,et al.  Robustness of the linear mixed model to misspecified error distribution , 2007, Comput. Stat. Data Anal..

[75]  M. Kenward,et al.  An Introduction to the Bootstrap , 2007 .

[76]  Cheng Li,et al.  Adjusting batch effects in microarray expression data using empirical Bayes methods. , 2007, Biostatistics.

[77]  Wen-Lin Kuo,et al.  A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. , 2006, Cancer cell.

[78]  G. Mills,et al.  Reverse phase protein array: validation of a novel proteomic technology and utility for analysis of primary leukemia specimens and hematopoietic stem cells , 2006, Molecular Cancer Therapeutics.

[79]  Nir Hacohen,et al.  Genome-scale loss-of-function screening with a lentiviral RNAi library , 2006, Nature Methods.

[80]  A. Nobel,et al.  The molecular portraits of breast tumors are conserved across microarray platforms , 2006, BMC Genomics.

[81]  Anne E Carpenter,et al.  A Lentiviral RNAi Library for Human and Mouse Genes Applied to an Arrayed Viral High-Content Screen , 2006, Cell.

[82]  M. Netea,et al.  IL-32 synergizes with nucleotide oligomerization domain (NOD) 1 and NOD2 ligands for IL-1beta and IL-6 production through a caspase 1-dependent mechanism. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[83]  Jung-Hyun Kim,et al.  Attenuation of breast tumor cell growth by conjugated linoleic acid via inhibition of 5-lipoxygenase activating protein. , 2005, Biochimica et biophysica acta.

[84]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[85]  M. Wigler,et al.  Circular binary segmentation for the analysis of array-based DNA copy number data. , 2004, Biostatistics.

[86]  Jean YH Yang,et al.  Bioconductor: open software development for computational biology and bioinformatics , 2004, Genome Biology.

[87]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.

[88]  M. Hofker Faculty Opinions recommendation of PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. , 2003 .

[89]  R. Tibshirani,et al.  Repeated observation of breast tumor subtypes in independent gene expression data sets , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[90]  Terence P. Speed,et al.  A comparison of normalization methods for high density oligonucleotide array data based on variance and bias , 2003, Bioinform..

[91]  J. Fletcher,et al.  BRD4-NUT fusion oncogene: a novel mechanism in aggressive carcinoma. , 2003, Cancer research.

[92]  N. Yamamoto,et al.  Ephrin‐B3–EphA4 interactions regulate the growth of specific thalamocortical axon populations in vitro , 2002, The European journal of neuroscience.

[93]  S. Dudoit,et al.  STATISTICAL METHODS FOR IDENTIFYING DIFFERENTIALLY EXPRESSED GENES IN REPLICATED cDNA MICROARRAY EXPERIMENTS , 2002 .

[94]  R. Tibshirani,et al.  Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[95]  V. Carey,et al.  Mixed-Effects Models in S and S-Plus , 2001 .

[96]  Christian A. Rees,et al.  Molecular portraits of human breast tumours , 2000, Nature.

[97]  M. Gatei,et al.  Role for ATM in DNA damage-induced phosphorylation of BRCA1. , 2000, Cancer research.

[98]  H. Ruffner,et al.  CBP/p300 interact with and function as transcriptional coactivators of BRCA1. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[99]  H. Sebastian Seung,et al.  Algorithms for Non-negative Matrix Factorization , 2000, NIPS.

[100]  S. Elledge,et al.  Requirement of ATM-dependent phosphorylation of brca1 in the DNA damage response to double-strand breaks. , 1999, Science.

[101]  H. Sebastian Seung,et al.  Learning the parts of objects by non-negative matrix factorization , 1999, Nature.

[102]  T. Williams,et al.  The developmentally regulated transcription factor AP-2 is involved in c-erbB-2 overexpression in human mammary carcinoma. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[103]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .