Information fusion with uncertainty modeled on topological event spaces

We investigate probability and belief functions constructed on topological event spaces (without requiring complementation operation as in the definition of Borel sets). Anchored on the Lattice Theory, and making use of the correspondence of distributive lattice and topology, we propose a hierarchical scheme for modeling fusion of evidence based on constructing the lattice of topologies over a given sample space, where each topology encodes context for sensor measurement as specified by the basic probability assignment function. Our approach provides a rigorous mathematical grounding for modeling uncertainty and information fusion based on upper and lower probabilities (such as the Dempster-Shafer model).

[1]  Michel Grabisch,et al.  Belief functions on lattices , 2008, Int. J. Intell. Syst..

[2]  Jean Dezert,et al.  On the validity of Dempster-Shafer Theory , 2012, 2012 15th International Conference on Information Fusion.

[3]  Lotfi A. Zadeh,et al.  On the Validity of Dempster''s Rule of Combination of Evidence , 1979 .

[4]  Philippe Smets,et al.  The Combination of Evidence in the Transferable Belief Model , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  J. Neumann,et al.  Theory of games and economic behavior , 1945, 100 Years of Math Milestones.

[6]  T. Denœux Conjunctive and disjunctive combination of belief functions induced by nondistinct bodies of evidence , 2008 .

[7]  A. Tarski,et al.  The Algebra of Topology , 1944 .

[8]  Philippe Smets,et al.  Belief functions: The disjunctive rule of combination and the generalized Bayesian theorem , 1993, Int. J. Approx. Reason..

[9]  Erik Blasch,et al.  Overview of Dempster-Shafer and belief function tracking methods , 2013, Defense, Security, and Sensing.

[10]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[11]  Ronald R. Yager,et al.  Classic Works of the Dempster-Shafer Theory of Belief Functions: An Introduction , 2008, Classic Works of the Dempster-Shafer Theory of Belief Functions.

[12]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[13]  Ronald R. Yager,et al.  Classic Works of the Dempster-Shafer Theory of Belief Functions , 2010, Classic Works of the Dempster-Shafer Theory of Belief Functions.

[14]  Chunlai Zhou,et al.  Belief functions on distributive lattices , 2012, Artif. Intell..

[15]  A. Tarski,et al.  On Closed Elements in Closure Algebras , 1946 .

[16]  G. Rota On the foundations of combinatorial theory I. Theory of Möbius Functions , 1964 .

[17]  R. Larson,et al.  The lattice of topologies: A survey equations , 1975 .

[18]  Jean-Pierre Barthélemy,et al.  Monotone Functions on Finite Lattices: An Ordinal Approach to Capacities, Belief and Necessity Functions , 2000 .

[19]  Brian A. Davey,et al.  An Introduction to Lattices and Order , 1989 .

[20]  Philippe Smets,et al.  Constructing the Pignistic Probability Function in a Context of Uncertainty , 1989, UAI.

[21]  G. Rota On the Foundations of Combinatorial Theory , 2009 .

[22]  Arnaud Martin,et al.  Implementing general belief function framework with a practical codification for low complexity , 2008, ArXiv.

[23]  Thierry Denoeux,et al.  Conjunctive and disjunctive combination of belief functions induced by nondistinct bodies of evidence , 2008, Artif. Intell..

[24]  Louis Narens,et al.  A foundation for support theory based on a non-Boolean event space , 2009 .

[25]  Chris Cornelis,et al.  International Journal of Approximate Reasoning Multi-adjoint Fuzzy Rough Sets: Definition, Properties and Attribute Selection , 2022 .

[26]  Louis Narens,et al.  Theories of Probability: An Examination of Logical and Qualitative Foundations , 2007 .

[27]  G. Birkhoff,et al.  On the combination of subalgebras , 1933, Mathematical Proceedings of the Cambridge Philosophical Society.