Correlated finite temperature mean field approximations

[1]  H. G. Miller,et al.  THE ORIGIN OF NUCLEAR SHAPE TRANSITIONS , 1993 .

[2]  H. G. Miller,et al.  Nuclear shape transitions at finite temperature and fixed volume , 1992 .

[3]  H. G. Miller,et al.  Nuclear Level Densities Corrected for Finite Size Effects , 1992 .

[4]  R. Rossignoli Finite temperature correlated quasiparticle approach , 1991 .

[5]  A. Plastino,et al.  Canonical mean field calculations at finite temperature , 1991 .

[6]  Plastino,et al.  Finite-temperature mean-field and higher-order approaches in canonical ensembles. , 1991, Physical review. C, Nuclear physics.

[7]  H. G. Miller,et al.  The observation of nuclear shape transitions at fixed angular momentum , 1991 .

[8]  Bush,et al.  Orientation fluctuations and the angular distribution of the giant-dipole-resonance gamma rays in hot rotating nuclei. , 1990, Physical review letters.

[9]  Plastino,et al.  Extended mean-field treatments and information theory. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[10]  Cole,et al.  Effect of the continuum on thermally induced phase transitions in nuclei. , 1990, Physical review. C, Nuclear physics.

[11]  Cole,et al.  Evidence for phase transitions in finite systems. , 1989, Physical review letters.

[12]  Plastino,et al.  Generalized statistical self-consistent approach. , 1989, Physical review. C, Nuclear physics.

[13]  Levit,et al.  Simple systematics of the shape transitions in hot rare-earth nuclei. , 1989, Physical review letters.

[14]  Cole,et al.  Nuclear shape transitions at finite temperature. , 1989, Physical review. C, Nuclear physics.

[15]  Levit,et al.  Thermal shape fluctuations, Landau theory, and giant dipole resonances in hot rotating nuclei. , 1988, Physical review letters.

[16]  H. G. Miller,et al.  “Phase transitions” at finite temperature in finite systems , 1987 .

[17]  Y. Alhassid,et al.  Landau theory of shape transitions in hot rotating nuclei , 1987 .

[18]  R. Broglia,et al.  Role of thermal fluctuations in the damping of the giant dipole resonance of spherical and deformed nuclei: 90Zr and 164Er , 1987 .

[19]  Y. Alhassid,et al.  Phenomenology of shape transitions in hot nuclei , 1984 .

[20]  M. Brack,et al.  The Strutinsky method and its foundation from the Hartree-Fock-Bogoliubov approximation at finite temperature , 1981 .

[21]  A. Goodman FINITE-TEMPERATURE HFB THEORY , 1981 .

[22]  Alan L. Goodman,et al.  THE TWO-LEVEL MODEL AT FINITE-TEMPERATURE , 1981 .

[23]  R. J. McCarthy,et al.  Convergence and the third-order effective shell-model interaction , 1978 .

[24]  J. Vary,et al.  Effective shell-model interaction through second order for the sd shell , 1977 .

[25]  U. Mosel,et al.  Self-consistent calculations for highly excited compound nuclei , 1974 .

[26]  M. Brack,et al.  Selfconsistent calculations of highly excited nuclei , 1974 .

[27]  M. Brack,et al.  Disappearance of shell effects at high excitation. Self-consistent calculations at finite temperatures , 1974 .