Hybrid Metaheuristics in Combinatorial Optimization: A Tutorial

This article is about a tutorial on hybrid metaheuristics which was given at the first edition of the conference Theory and Practice of Natural Computing, held in October 2012 in Tarragona, Spain. Hybrid metaheuristics are techniques for (combinatorial) optimization that result from a combination of algorithmic components originating from different optimization methods. The tutorial covers five representative examples: (1) the extension of iterated local search towards population-based optimization, (2) the introduction of elements from constraint programming into ant colony optimization, (3) the integration of branch & bound into variable neighborhood search, (4) the use of problem relaxation for guiding tabu search, and (5) the combination of dynamic programming with evolutionary algorithms.

[1]  Christian Blum,et al.  Metaheuristics in combinatorial optimization: Overview and conceptual comparison , 2003, CSUR.

[2]  Dan Gusfield,et al.  Improved Algorithms for Inferring the Minimum Mosaic of a Set of Recombinants , 2007, CPM.

[3]  Carlos Cotta dash,et al.  A study of hybridisation techniques and their application to the design of evolutionary algorithms , 1998 .

[4]  Thomas Stützle,et al.  Large neighbourhood search algorithms for the founder sequence reconstruction problem , 2012, Comput. Oper. Res..

[5]  Thomas Stützle,et al.  Ant Colony Optimization , 2009, EMO.

[6]  Thomas Stützle,et al.  Iterated local search for the quadratic assignment problem , 2006, Eur. J. Oper. Res..

[7]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control, Two Volume Set , 1995 .

[8]  Enrique Alba,et al.  Optimization Techniques for Solving Complex Problems , 2009 .

[9]  Günther R. Raidi A unified view on hybrid metaheuristics , 2006 .

[10]  Christine Solnon,et al.  Ant Colony Optimization and Constraint Programming , 2010 .

[11]  Pierre Hansen,et al.  Variable Neighborhood Search , 2018, Handbook of Heuristics.

[12]  Peter J. Stuckey,et al.  Introduction to Constraint Logic Programming , 1998 .

[13]  Rolf Drechsler,et al.  Applications of Evolutionary Computing, EvoWorkshops 2008: EvoCOMNET, EvoFIN, EvoHOT, EvoIASP, EvoMUSART, EvoNUM, EvoSTOC, and EvoTransLog, Naples, Italy, March 26-28, 2008. Proceedings , 2008, EvoWorkshops.

[14]  Michel Vasquez,et al.  Improved results on the 0-1 multidimensional knapsack problem , 2005, Eur. J. Oper. Res..

[15]  Christian Blum,et al.  Hybrid Metaheuristics, An Emerging Approach to Optimization , 2008, Hybrid Metaheuristics.

[16]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control, Vol. II , 1976 .

[17]  Jin-Kao Hao,et al.  A hybrid approach for the 0-1 multidimensional knapsack problem , 2001, IJCAI 2001.

[18]  Michel Gendreau,et al.  A Constraint Programming Framework for Local Search Methods , 1999, J. Heuristics.

[19]  Thomas Stützle,et al.  Local search algorithms for combinatorial problems: analysis, algorithms, and new applications , 1999 .

[20]  M. J. Blesa,et al.  Solving the KCT Problem: Large‐Scale Neighborhood Search and Solution Merging , 2009 .

[21]  Christian Blum,et al.  Hybrid Metaheuristics , 2010, Artificial Intelligence: Foundations, Theory, and Algorithms.

[22]  Helena Ramalhinho Dias Lourenço,et al.  Iterated Local Search , 2001, Handbook of Metaheuristics.

[23]  David Pisinger,et al.  Large Neighborhood Search , 2018, Handbook of Metaheuristics.

[24]  Thomas Stützle,et al.  Combinations of Local Search and Exact Algorithms , 2003, EvoWorkshops.

[25]  C. Reeves Modern heuristic techniques for combinatorial problems , 1993 .

[26]  Günther R. Raidl,et al.  A Unified View on Hybrid Metaheuristics , 2006, Hybrid Metaheuristics.

[27]  El-Ghazali Talbi,et al.  Hybridizing exact methods and metaheuristics: A taxonomy , 2009, Eur. J. Oper. Res..

[28]  Christian Blum,et al.  Revisiting dynamic programming for finding optimal subtrees in trees , 2007, Eur. J. Oper. Res..

[29]  Christian Blum,et al.  Hybrid metaheuristics in combinatorial optimization: A survey , 2011, Appl. Soft Comput..

[30]  F. Glover,et al.  Handbook of Metaheuristics , 2019, International Series in Operations Research & Management Science.

[31]  Bernd Meyer,et al.  Hybrids of Constructive Metaheuristics and Constraint Programming: A Case Study with ACO , 2008, Hybrid Metaheuristics.