Small-signal analysis of a visual reflex in the locust

Small-signal frequency-response measurements of a locust visual reflex in the range 0.0014 cps to 6 cps suggest description via special departures from ordinary linear-system characterization, at both low and high frequencies.At low frequency the response is similar to that of an adapting system having the formal characteristics of fractional-order differentiation. Adjustment of test-pattern luminance from 0.00025 to 1 lambert increases the order of this differentiation by about 0.37. Comparison of intensity-dependent properties of the reflex with related electrophysiological studies of photoreception implies that the frequency dependence of the optomotor response is dominated by receptor dynamics.At high frequency, phase lag is less than that required by minimum-phase linear description of the gain curves. In order to avoid the question of “predictive tracking” by the locust, a time-and frequency-dependent gain modulation is suggested to account for the less-than-minimum phase property, and shown to be qualitatively compatible with transients in gain at the start of sinusoidal pattern motion.The motion-perception model of Hassenstein and Reichardt, shown previously to predict the gross gain and phase relations of the small-signal locust response, is apparently an inappropriate description of these data since the decisive gain and phase measurements are more plausibly accounted for by intensity-dependent adaptation than by the properties of the model underlying the original prediction. An abstraction of the fundamental properties of their multiplicative interaction of ommatidia, however, can assist electrophysiological search for neural correlates of motion perception; it is shown that, under certain conditions, interaction of receptor channels via lateral shunting inhibition is (a) indistinguishable from the multiplicative motion-perception topology, and (b) formally related to a nonlinear property of inhibition in the eye of Limulus.

[1]  H. Barlow,et al.  Selective Sensitivity to Direction of Movement in Ganglion Cells of the Rabbit Retina , 1963, Science.

[2]  C. Wiersma,et al.  Electrical responses in decapod crustacean visual systems. , 1963, Journal of cellular and comparative physiology.

[3]  Linear electrical flicker responses from the eye of the wolf spider , 2004, Documenta Ophthalmologica.

[4]  J. Pringle,et al.  The Response Of A Sense Organ To A Harmonic Stimulus , 1952 .

[5]  R. DeVoe,et al.  Linear Superposition of Retinal Action Potentials to Predict Electrical Flicker Responses from the Eye of the Wolf Spider, Lycosa baltimoriana (Keyserling) , 1962, The Journal of General Physiology.

[6]  Laurence R. Young,et al.  Variable Feedback Experiments Testing a Sampled Data Model for Eye Tracking Movements , 1963 .

[7]  S. Nakajima Adaptation in Stretch Receptor Neurons of Crayfish , 1964, Science.

[8]  R W JONES,et al.  A RECEPTOR ANALOG HAVING LOGARITHMIC RESPONSE. , 1963, IEEE transactions on bio-medical engineering.

[9]  K. Kirschfeld Quantitative Beziehungen zwischen Lichtreiz und monophasischem Elektroretinogramm bei Rüsselkäfern , 1961, Zeitschrift für vergleichende Physiologie.

[10]  Giulio Fermi,et al.  Optomotorische Reaktionen der Fliege Musca Domestica , 1963, Kybernetik.

[11]  P. Dallos,et al.  Learning behavior of the eye fixation control system , 1963 .

[12]  W. Reichardt,et al.  Übertragungseigenschaften im Auswertesystem für das Bewegungssehen , 1959 .

[13]  G. Brindley Physiology of the Retina and the Visual Pathway , 1960 .

[14]  W. Fry,et al.  Retinal action potential; effect of temperature on magnitude and latency in the grasshopper. , 1955, Journal of cellular and comparative physiology.

[15]  J. Thorson Dynamics of Motion Perception in the Desert Locust , 1964, Science.

[16]  D. Vowles,et al.  MAZE LEARNING AND VISUAL DISCRIMINATION IN THE WOOD ANT (FORMICA RUFA). , 1965, British journal of psychology.

[17]  Chapman Km TRANSFER FUNCTIONS IN SENSORY RECEPTOR ANALYSIS. , 1963 .

[18]  E. Warburg,et al.  Ueber das Verhalten sogenannter unpolarisirbarer Elektroden gegen Wechselstrom , 1899 .

[19]  H. K. Hartline,et al.  INHIBITION IN THE EYE OF LIMULUS , 1956, The Journal of general physiology.

[20]  W. Reichardt Autokorrelations-Auswertung als Funktionsprinzip des Zentralnervensystems , 1957 .

[21]  M. Biederman-Thorson Source Mechanisms for Unit Activity in Isolated Crayfish Central Nervous System , 1966, The Journal of general physiology.

[22]  Peter Kunze,et al.  Untersuchung des Bewegungssehens fixiert fliegender Bienen , 1961, Zeitschrift für vergleichende Physiologie.

[23]  E. Weber,et al.  Linear transient analysis , 1954 .

[24]  Theodore H. Bullock,et al.  Unit Responses in the Frog's Tectum to Moving and Nonmoving Visual Stimuli , 1963, Science.

[25]  H. Barlow,et al.  Retinal ganglion cells responding selectively to direction and speed of image motion in the rabbit , 1964, The Journal of physiology.

[26]  H. Curtis,et al.  ELECTRIC IMPEDANCE OF NERVE AND MUSCLE , 1936 .

[27]  W. Fry,et al.  Retinal action potential; theory and experimental results for grasshopper eyes. , 1955, Journal of cellular and comparative physiology.

[28]  P. W. Nye,et al.  An investigation of the mechanisms of eye movement control , 1961, Kybernetik.

[29]  G. G. Furman,et al.  Comparison of models for subtractive and shunting lateral-inhibition in receptor-neuron fields , 1965, Kybernetik.

[30]  A. Hodgkin,et al.  Changes in time scale and sensitivity in the ommatidia of Limulus , 1964, The Journal of physiology.

[31]  B. Hassenstein,et al.  Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus , 1956 .

[32]  L STARK,et al.  Single unit responses in a primitive photoreceptor organ. , 1963, Journal of neurophysiology.

[33]  W. Pitts,et al.  What the Frog's Eye Tells the Frog's Brain , 1959, Proceedings of the IRE.

[34]  G. D. Mccann,et al.  Optomotor response studies of insect vision , 1965, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[35]  R. DeVoe,et al.  Linear Relations between Stimulus Amplitudes and Amplitudes of Retinal Action Potentials from the Eye of the Wolf Spider , 1963, The Journal of general physiology.

[36]  J. Pringle,et al.  The physiology of insect fibrillar muscle - I. Anatomy and innervation of the basalar muscle of lamellicorn beetles , 1959, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[37]  John Thorson,et al.  Small-signal analysis of a visual reflex in the locust , 1966, Kybernetik.

[38]  H. Barlow,et al.  The mechanism of directionally selective units in rabbit's retina. , 1965, The Journal of physiology.

[39]  Jones Rw,et al.  Mathematical simulation of certain receptor and effector organs. , 1962 .

[40]  Lawrence Stark,et al.  Predictive Control of Eye Tracking Movements , 1962 .

[41]  H. K. Hartline,et al.  INHIBITORY INTERACTION OF RECEPTOR UNITS IN THE EYE OF LIMULUS , 1957, The Journal of general physiology.

[42]  L Maffei,et al.  Retinal ganglion cell response to sinusoidal light stimulation. , 1966, Journal of neurophysiology.

[43]  Lawrence S. Frishkopf,et al.  Model of Neural Inhibition in the Mammalian Cochlea , 1964 .