A global map of genetic diversity in Babesia microti reveals strong population structure and identifies variants associated with clinical relapse

Human babesiosis caused by Babesia microti is an emerging tick-borne zoonosis of increasing importance due to its rising incidence and expanding geographic range1. Infection with this organism, an intraerythrocytic parasite of the phylum Apicomplexa, causes a febrile syndrome similar to malaria2. Relapsing disease is common among immunocompromised and asplenic individuals3,4 and drug resistance has recently been reported5. To investigate the origin and genetic diversity of this parasite, we sequenced the complete genomes of 42 B. microti samples from around the world, including deep coverage of clinical infections at endemic sites in the continental USA. Samples from the continental USA segregate into a Northeast lineage and a Midwest lineage, with subsequent divergence of subpopulations along geographic lines. We identify parasite variants that associate with relapsing disease, including amino acid substitutions in the atovaquone-binding regions of cytochrome b (cytb) and the azithromycin-binding region of ribosomal protein subunit L4 (rpl4). Our results shed light on the origin, diversity and evolution of B. microti, suggest possible mechanisms for clinical relapse, and create the foundation for further research on this emerging pathogen.

[1]  M. Berriman,et al.  What helminth genomes have taught us about parasite evolution , 2014, Parasitology.

[2]  H. Ikadai,et al.  Short report: cloning of the Babesia gibsoni cytochrome B gene and isolation of three single nucleotide polymorphisms from parasites present after atovaquone treatment. , 2006, The American journal of tropical medicine and hygiene.

[3]  T. Steitz,et al.  Revisiting the structures of several antibiotics bound to the bacterial ribosome , 2010, Proceedings of the National Academy of Sciences.

[4]  W. S. Champney,et al.  Ribosomal protein gene sequence changes in erythromycin-resistant mutants of Escherichia coli , 1994, Journal of bacteriology.

[5]  M. Lercher,et al.  PopGenome: An Efficient Swiss Army Knife for Population Genomic Analyses in R , 2014, Molecular biology and evolution.

[6]  S. Kyes,et al.  Antigenic variation at the infected red cell surface in malaria. , 2001, Annual review of microbiology.

[7]  Alexandros Stamatakis,et al.  RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies , 2014, Bioinform..

[8]  J. Dekker,et al.  Case 6-2014 , 2014 .

[9]  M. Suchard,et al.  Bayesian selection of continuous-time Markov chain evolutionary models. , 2001, Molecular biology and evolution.

[10]  M. DePristo,et al.  The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. , 2010, Genome research.

[11]  G. Killeen,et al.  Comparative evaluation of four mosquitoes sampling methods in rice irrigation schemes of lower Moshi, northern Tanzania , 2009, Malaria Journal.

[12]  D. Bryant,et al.  A Simple and Robust Statistical Test for Detecting the Presence of Recombination , 2006, Genetics.

[13]  J. Dekker,et al.  Case records of the Massachusetts General Hospital. Case 6-2014. A 35-day-old boy with fever, vomiting, mottled skin, and severe anemia. , 2014, The New England journal of medicine.

[14]  Q. Wei,et al.  Human Babesiosis in Japan: Epizootiologic Survey of Rodent Reservoir and Isolation of New Type of Babesia microti-Like Parasite , 2001, Journal of Clinical Microbiology.

[15]  G. Cross,et al.  Molecular basis for trypanosome antigenic variation , 1982, Cell.

[16]  A. Jackson Genome evolution in trypanosomatid parasites , 2014, Parasitology.

[17]  S. Telford,et al.  What is Babesia microti? , 2003, Parasitology.

[18]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[19]  G. Healy,et al.  Babesiosis in a Massachusetts resident. , 1970, The New England journal of medicine.

[20]  S. Karakashian,et al.  Development of Babesia microti sporozoites in adult Ixodes dammini. , 1986, International journal for parasitology.

[21]  P. Collignon,et al.  First report of human babesiosis in Australia , 2012, The Medical journal of Australia.

[22]  D. C. Henckel,et al.  Case report. , 1995, Journal.

[23]  Beau Dabbs,et al.  Summary and discussion of : “ Controlling the False Discovery Rate : A Practical and Powerful Approach to Multiple Testing , 2014 .

[24]  Scott C. Williams,et al.  Expansion of Zoonotic Babesiosis and Reported Human Cases, Connecticut, 2001–2010 , 2014, Journal of medical entomology.

[25]  Kim Rutherford,et al.  Artemis: sequence visualization and annotation , 2000, Bioinform..

[26]  S. Telford,et al.  A Polymorphic Multigene Family Encoding an Immunodominant Protein from Babesia microti , 2000, Journal of Clinical Microbiology.

[27]  Joanne M. Morrisey,et al.  Resistance mutations reveal the atovaquone‐binding domain of cytochrome b in malaria parasites , 1999, Molecular microbiology.

[28]  R. Leclercq,et al.  Resistance to macrolides in clinical isolates of Streptococcus pyogenes due to ribosomal mutations. , 2002, The Journal of antimicrobial chemotherapy.

[29]  J. Boothroyd,et al.  Characterization of cytochrome b from Toxoplasma gondii and Q(o) domain mutations as a mechanism of atovaquone-resistance. , 2000, Molecular and biochemical parasitology.

[30]  S. Telford,et al.  Increasing health burden of human babesiosis in endemic sites. , 2003, The American journal of tropical medicine and hygiene.

[31]  J. Maguire,et al.  Solution Hybrid Selection with Ultra-long Oligonucleotides for Massively Parallel Targeted Sequencing , 2009, Nature Biotechnology.

[32]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[33]  D. Fidock,et al.  In Vitro Efficacy, Resistance Selection, and Structural Modeling Studies Implicate the Malarial Parasite Apicoplast as the Target of Azithromycin* , 2007, Journal of Biological Chemistry.

[34]  J. R. Lobry,et al.  SeqinR 1.0-2: A Contributed Package to the R Project for Statistical Computing Devoted to Biological Sequences Retrieval and Analysis , 2007 .

[35]  A. Nishida,et al.  Babesia microti-group parasites compared phylogenetically by complete sequencing of the CCTeta gene in 36 isolates. , 2009, The Journal of veterinary medical science.

[36]  D. R. Allred,et al.  Antigenic variation in Babesia bovis occurs through segmental gene conversion of the ves multigene family, within a bidirectional locus of active transcription , 2006, Molecular microbiology.

[37]  W. S. Champney,et al.  Erythromycin inhibits the assembly of the large ribosomal subunit in growing Escherichia coli cells , 1995, Current Microbiology.

[38]  A. Spielman,et al.  CHAPTER 1 – Babesial Infections in Humans and Wildlife , 1993 .

[39]  Q. Cheng,et al.  Mutations in Plasmodium falciparumCytochrome b That Are Associated with Atovaquone Resistance Are Located at a Putative Drug-Binding Site , 2000, Antimicrobial Agents and Chemotherapy.

[40]  Richard Durbin,et al.  Fast and accurate long-read alignment with Burrows–Wheeler transform , 2010, Bioinform..

[41]  M. Leinonen,et al.  Ribosomal Mutations in Streptococcus pneumoniae Clinical Isolates , 2002, Antimicrobial Agents and Chemotherapy.

[42]  M. Suchard,et al.  Improving the accuracy of demographic and molecular clock model comparison while accommodating phylogenetic uncertainty. , 2012, Molecular biology and evolution.

[43]  M. Young,et al.  Persistent and relapsing babesiosis in immunocompromised patients. , 2008, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[44]  Mihir Kekre,et al.  Generation of Antigenic Diversity in Plasmodium falciparum by Structured Rearrangement of Var Genes During Mitosis , 2014, PLoS genetics.

[45]  M. Kiehntopf,et al.  First confirmed autochthonous case of human Babesia microti infection in Europe , 2007, European Journal of Clinical Microbiology & Infectious Diseases.

[46]  A. Spielman,et al.  Human babesiosis in the United States. , 1978, Annals of internal medicine.

[47]  X. Su,et al.  Disruption of a Plasmodium falciparum Multidrug Resistance-associated Protein (PfMRP) Alters Its Fitness and Transport of Antimalarial Drugs and Glutathione , 2009, Journal of Biological Chemistry.

[48]  J. Barry,et al.  Why are parasite contingency genes often associated with telomeres? , 2003, International journal for parasitology.

[49]  Badria B. El-Sayed,et al.  Polymorphisms in Plasmodium falciparum Chloroquine Resistance Transporter and Multidrug Resistance 1 Genes: Parasite Risk Factors that Affect Treatment Outcomes for P. falciparum Malaria after Artemether-Lumefantrine and Artesunate-Amodiaquine , 2014, The American journal of tropical medicine and hygiene.

[50]  J. Stockman,et al.  Transfusion-Associated Babesiosis in the United States: A Description of Cases , 2013 .

[51]  Wei-Chun Kao,et al.  Structural analysis of atovaquone-inhibited cytochrome bc1 complex reveals the molecular basis of antimalarial drug action , 2014, Nature Communications.

[52]  I. Clark,et al.  Do babesiosis and malaria share a common disease process? , 1998, Annals of tropical medicine and parasitology.

[53]  P. Greenberg,et al.  Severe babesiosis in Long Island: review of 34 cases and their complications. , 2001, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[54]  S. Telford,et al.  Not “out of Nantucket”: Babesia microti in southern New England comprises at least two major populations , 2014, Parasites & Vectors.

[55]  Choukri Ben Mamoun,et al.  Sequencing of the smallest Apicomplexan genome from the human pathogen Babesia microti , 2012, Nucleic acids research.

[56]  Steven J. M. Jones,et al.  Abyss: a Parallel Assembler for Short Read Sequence Data Material Supplemental Open Access , 2022 .

[57]  Andy South,et al.  rworldmap : a new R package for mapping global data , 2011, R J..

[58]  Matthias Frank,et al.  Frequent recombination events generate diversity within the multi-copy variant antigen gene families of Plasmodium falciparum. , 2008, International journal for parasitology.

[59]  A. Spielman,et al.  Sexuality in piroplasms as revealed by electron microscopy in Babesia microti. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[60]  Kevin Galinsky,et al.  Hybrid selection for sequencing pathogen genomes from clinical samples , 2011, Genome Biology.

[61]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[62]  Samit R. Joshi,et al.  Emergence of resistance to azithromycin-atovaquone in immunocompromised patients with Babesia microti infection. , 2010, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[63]  D. Crippen Description of the Cases , 2002 .

[64]  S. Telford,et al.  Human Babesiosis in Japan: Isolation ofBabesia microti-Like Parasites from an Asymptomatic Transfusion Donor and from a Rodent from an Area Where Babesiosis Is Endemic , 2001, Journal of Clinical Microbiology.

[65]  Geoffrey J. Barton,et al.  Jalview Version 2—a multiple sequence alignment editor and analysis workbench , 2009, Bioinform..

[66]  M. Nei,et al.  Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. , 1986, Molecular biology and evolution.

[67]  S. Ho,et al.  Relaxed Phylogenetics and Dating with Confidence , 2006, PLoS biology.

[68]  G. Robbins,et al.  Treatment of refractory Babesia microti infection with atovaquone-proguanil in an HIV-infected patient: case report. , 2007, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[69]  A. Reid Large, rapidly evolving gene families are at the forefront of host–parasite interactions in Apicomplexa , 2014, Parasitology.

[70]  François Nosten,et al.  Mefloquine resistance in Plasmodium falciparum and increased pfmdr1 gene copy number , 2004, The Lancet.

[71]  F. Cox Human babesiosis , 1980, Nature.

[72]  Michele Vendruscolo,et al.  Structural Approaches to Sequence Evolution , 2007 .

[73]  J. Kuritsky,et al.  Babesiosis in Wisconsin. A new focus of disease transmission. , 1985, JAMA.

[74]  Jean YH Yang,et al.  Bioconductor: open software development for computational biology and bioinformatics , 2004, Genome Biology.

[75]  Rahul Gondalia,et al.  Babesiosis Occurrence among the Elderly in the United States, as Recorded in Large Medicare Databases during 2006–2013 , 2015, PloS one.

[76]  S. Salzberg,et al.  Alignment of whole genomes. , 1999, Nucleic acids research.

[77]  W. Hanson,et al.  Susceptibility of five strains of mice to Babesia microti of human origin. , 1979, The Journal of parasitology.

[78]  Y. Endo,et al.  Possible emergence of drug-resistant variants of Babesia gibsoni in clinical cases treated with atovaquone and azithromycin. , 2009, Journal of veterinary internal medicine.

[79]  S. Telford,et al.  [Detection of natural foci of babesiosis and granulocytic ehrlichiosis in Russia]. , 2002, Zhurnal mikrobiologii, epidemiologii, i immunobiologii.

[80]  D. R. Allred,et al.  Antigenic variation of parasite-derived antigens on the surface of Babesia bovis-infected erythrocytes , 1994, Infection and immunity.

[81]  J. Benach,et al.  Human babesiosis in New York State: an epidemiological description of 136 cases. , 1992, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[82]  D. R. Allred,et al.  Antigenic variation and cytoadhesion in Babesia bovis and Plasmodium falciparum: different logics achieve the same goal. , 2004, Molecular and biochemical parasitology.