Discrete Conservation Properties of Unstructured Mesh Schemes

Numerical methods with discrete conservation statements are useful because they cannot produce solutions that violate important physical constraints. A large number of numerical methods used in computational fluid dynamics (CFD) have either global or local conservation statements for some of the primary unknowns of the method. This review suggests that local conservation of primary unknowns often follows from global conservation of those quantities. Secondary conservation involves the conservation of derived quantities, such as kinetic energy, entropy, and vorticity, which are not directly unknowns of the numerical system. Secondary conservation can further improve physical fidelity of a numerical solution, but it is typically much harder to achieve. We consider current approaches to secondary conservation and techniques used outside of CFD that are potentially related. Finally, the review concludes with a discussion of how secondary conservation properties might be included automatically.

[1]  Pramod K. Subbareddy,et al.  A fully discrete, kinetic energy consistent finite-volume scheme for compressible flows , 2009, J. Comput. Phys..

[2]  J. Nédélec Mixed finite elements in ℝ3 , 1980 .

[3]  P. Moin,et al.  Fully Conservative Higher Order Finite Difference Schemes for Incompressible Flow , 1998 .

[4]  Antony Jameson,et al.  The Construction of Discretely Conservative Finite Volume Schemes that Also Globally Conserve Energy or Entropy , 2008, J. Sci. Comput..

[5]  Uri M. Ascher,et al.  On Symplectic and Multisymplectic Schemes for the KdV Equation , 2005, J. Sci. Comput..

[6]  Dimitris Drikakis,et al.  On entropy generation and dissipation of kinetic energy in high-resolution shock-capturing schemes , 2008, J. Comput. Phys..

[7]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: I. Symmetric forms of the compressible Euler and Navier—Stokes equations and the second law of thermodynamics , 1986 .

[8]  J. Frank Conservation of wave action under multisymplectic discretizations , 2006 .

[9]  Peter Bradshaw,et al.  Engineering Calculation Methods for Turbulent Flow , 1981 .

[10]  R. A. Nicolaides Incompressible Computational Fluid Dynamics: The Covolume Approach to Computing Incompressible Flows , 1993 .

[11]  Jean-Pierre Croisille,et al.  An efficient box-scheme for convection–diffusion equations with sharp contrast in the diffusion coefficients , 2005 .

[12]  J. Blair Perot,et al.  Direct numerical simulations of turbulent flows over superhydrophobic surfaces , 2008, Journal of Fluid Mechanics.

[13]  E. Tonti The reason for analogies between physical theories , 1976 .

[14]  D. Boffi,et al.  Computational Models of Electromagnetic Resonators: Analysis of Edge Element Approximation , 1999 .

[15]  Jason Frank,et al.  Conservation Properties of Smoothed Particle Hydrodynamics Applied to the Shallow Water Equation , 2001 .

[16]  David F. Griffiths,et al.  An approximately divergence‐free 9‐node velocity element (with variations) for incompressible flows , 1981 .

[17]  Ralf Hiptmair,et al.  Discrete Hodge-Operators: an Algebraic Perspective , 2001 .

[18]  J. Blair Perot,et al.  A self-adapting turbulence model for flow simulation at any mesh resolution , 2007 .

[19]  David P. Schmidt,et al.  DIRECT INTERFACE TRACKING OF DROPLET DEFORMATION , 2002 .

[20]  Thomas J. R. Hughes,et al.  Consistent finite element calculations of boundary and internal fluxes , 1998 .

[21]  H. B. Keller A New Difference Scheme for Parabolic Problems , 1971 .

[22]  M. Shashkov,et al.  The Orthogonal Decomposition Theorems for Mimetic Finite Difference Methods , 1999 .

[23]  J. Blair Perot,et al.  Discrete calculus methods for diffusion , 2007, J. Comput. Phys..

[24]  Paul D. Ledger,et al.  Evidence of exponential convergence in the computation of Maxwell eigenvalues , 2005 .

[25]  D. Schmidt,et al.  Accuracy and conservation properties of a three-dimensional unstructured staggered mesh scheme for fluid dynamics , 2002 .

[26]  Thomas J. R. Hughes,et al.  The Continuous Galerkin Method Is Locally Conservative , 2000 .

[27]  S. Reich,et al.  Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity , 2001 .

[28]  N. Sukumar,et al.  Voronoi cell finite difference method for the diffusion operator on arbitrary unstructured grids , 2003 .

[29]  Parviz Moin,et al.  Higher entropy conservation and numerical stability of compressible turbulence simulations , 2004 .

[30]  Mikhail Shashkov,et al.  Local Reconstruction of a Vector Field from Its Normal Components on the Faces of Grid Cells , 1998 .

[31]  A. Harten On the symmetric form of systems of conservation laws with entropy , 1983 .

[32]  Rwcp Verstappen,et al.  A fourth-order finite volume method for direct numerical simulation of turbulence at higher Reynolds numbers , 1996 .

[33]  J. Blair Perot,et al.  Mimetic Reconstruction of Vectors , 2006 .

[34]  P. Moin,et al.  Suitability of upwind-biased finite difference schemes for large-eddy simulation of turbulent flows , 1997 .

[35]  J. Blair Perot,et al.  Higher-order mimetic methods for unstructured meshes , 2006, J. Comput. Phys..

[36]  Jason Frank,et al.  Linear PDEs and Numerical Methods That Preserve a Multisymplectic Conservation Law , 2006, SIAM J. Sci. Comput..

[37]  T. A. Porsching,et al.  The dual variable method for finite element discretizations of Navier/Stokes equations , 1985 .

[38]  Martin Costabel,et al.  Computation of resonance frequencies for Maxwell equations in non-smooth domains , 2003 .

[39]  Alejandro L. Garcia,et al.  A hydrodynamically correct thermal lattice Boltzmann model , 1997 .

[40]  Claudio Mattiussi,et al.  The Finite Volume, Finite Difference, and Finite Elements Methods as Numerical Methods for Physical Field Problems , 2000 .

[41]  P. Moin,et al.  DIRECT NUMERICAL SIMULATION: A Tool in Turbulence Research , 1998 .

[42]  J. Cavendish,et al.  The dual variable method for solving fluid flow difference equations on Delaunay triangulations , 1991 .

[43]  Ramesh Nallapati,et al.  A moving unstructured staggered mesh method for the simulation of incompressible free-surface flows , 2003 .

[44]  Scott C. Morris,et al.  Shear-Layer Instabilities: Particle Image Velocimetry Measurements and Implications for Acoustics , 2011 .

[45]  H. Whitney Geometric Integration Theory , 1957 .

[46]  Philip L. Roe,et al.  A Proposed Cure to the Carbuncle Phenomenon , 2009 .

[47]  P. Raviart,et al.  A mixed finite element method for 2-nd order elliptic problems , 1977 .

[48]  J. Blair Perot,et al.  A discrete calculus analysis of the Keller Box scheme and a generalization of the method to arbitrary meshes , 2007, J. Comput. Phys..

[49]  D. Mavriplis UNSTRUCTURED GRID TECHNIQUES , 1997 .

[50]  Georges de Rham Sur l’analysis situs des variétés à $n$ dimensions , 1931 .

[51]  Oleg V. Vasilyev High Order Finite Difference Schemes on Non-uniform Meshes with Good Conservation Properties , 2000 .

[52]  C. Mattiussi An Analysis of Finite Volume, Finite Element, and Finite Difference Methods Using Some Concepts from Algebraic Topology , 1997 .

[53]  Yohei Morinishi,et al.  Skew-symmetric form of convective terms and fully conservative finite difference schemes for variable density low-Mach number flows , 2010, J. Comput. Phys..

[54]  Douglas K. Lilly,et al.  ON THE COMPUTATIONAL STABILITY OF NUMERICAL SOLUTIONS OF TIME-DEPENDENT NON-LINEAR GEOPHYSICAL FLUID DYNAMICS PROBLEMS , 1965 .

[55]  B. Perot Conservation Properties of Unstructured Staggered Mesh Schemes , 2000 .

[56]  F. Giraldo,et al.  Analysis of an Exact Fractional Step Method , 2002 .

[57]  E. Tadmor Skew-selfadjoint form for systems of conservation laws , 1984 .

[58]  P. Wesseling,et al.  Finite volume discretization of the incompressible Navier-Stokes equations in general coordinates on staggered grids , 1991 .

[59]  F. Harlow,et al.  Numerical Calculation of Time‐Dependent Viscous Incompressible Flow of Fluid with Free Surface , 1965 .

[60]  Len G. Margolin,et al.  Finite volume methods and the equations of finite scale: A mimetic approach , 2008 .

[61]  Daniel A. White,et al.  Orthogonal vector basis functions for time domain finite element solution of the vector wave equation [EM field analysis] , 1999 .

[62]  P Español,et al.  Thermodynamically consistent mesoscopic fluid particle model. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[63]  Daniel A. White,et al.  A Vector Finite Element Time-Domain Method for Solving Maxwell's Equations on Unstructured Hexahedral Grids , 2001, SIAM J. Sci. Comput..

[64]  Joel H. Ferziger,et al.  Numerical simulation of a compressible, homogeneous, turbulent shear flow , 1981 .

[65]  M. Shashkov,et al.  Support-operator finite-difference algorithms for general elliptic problems , 1995 .

[66]  Alain Bossavit,et al.  Edge-elements for scattering problems , 1989 .

[67]  Jean-Jacques Chattot A conservative box-scheme for the Euler equations , 1999 .

[68]  Thomas S. Lund,et al.  Kinetic energy conservation issues associated with the collocated mesh scheme for incompressible flow , 2006, J. Comput. Phys..

[69]  I. Wenneker,et al.  Conservation properties of a new unstructured staggered scheme , 2003 .

[70]  B. Strand Summation by parts for finite difference approximations for d/dx , 1994 .

[71]  Krishnan Mahesh,et al.  A numerical method for large-eddy simulation in complex geometries , 2004 .

[72]  Lorenzo Pareschi,et al.  A Numerical Method for the Accurate Solution of the Fokker–Planck–Landau Equation in the Nonhomogeneous Case , 2002 .

[73]  Peter Bradshaw,et al.  Solution of a hyperbolic system of turbulence-model equations by the “box” scheme , 1980 .

[74]  Terry R. Healy,et al.  Completeness, conservation and error in SPH for fluids , 2008 .

[75]  Dominique Laurence,et al.  Global kinetic energy conservation with unstructured meshes , 2002 .

[76]  Ivan Yotov,et al.  Local flux mimetic finite difference methods , 2009, Numerische Mathematik.