Generating page clippings from web search results using a dynamically terminated genetic algorithm

We present a page clipping synthesis (PCS) search method to extract relevant paragraphs from other web search results. The PCS search method applies a dynamically terminated genetic algorithm to generate a set of best-of-run page clippings in a controlled amount of time. These page clippings provide users the information they are most interested in and therefore save the users time and trouble in browsing lots of hyperlinks. We justify that the dynamically terminated genetic algorithm yields cost-effective solutions compared with solutions reached by conventional genetic algorithms. Meanwhile, effectiveness measure confirmed that PCS performs better than general search engines.

[1]  Shlomo Moran,et al.  The stochastic approach for link-structure analysis (SALSA) and the TKC effect , 2000, Comput. Networks.

[2]  Harris Wu,et al.  Probabilistic question answering on the web , 2002, WWW '02.

[3]  Eduard H. Hovy,et al.  Question Answering in Webclopedia , 2000, TREC.

[4]  Yung-Keun Kwon,et al.  Personalized email marketing with a genetic programming circuit model , 2001 .

[5]  Weiguo Fan,et al.  A generic ranking function discovery framework by genetic programming for information retrieval , 2004, Inf. Process. Manag..

[6]  James Allan,et al.  Approaches to passage retrieval in full text information systems , 1993, SIGIR.

[7]  Larry J. Eshelman,et al.  Preventing Premature Convergence in Genetic Algorithms by Preventing Incest , 1991, ICGA.

[8]  Edward A. Fox,et al.  Ranking Function Discovery by Genetic Programming for Robust Retrieval , 2003, TREC.

[9]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[10]  C. Lee Giles,et al.  Context and Page Analysis for Improved Web Search , 1998, IEEE Internet Comput..

[11]  Andreas Paepcke,et al.  Beyond document similarity: understanding value-based search and browsing technologies , 2000, SGMD.

[12]  Jorng-Tzong Horng,et al.  Applying genetic algorithms to query optimization in document retrieval , 2000, Inf. Process. Manag..

[13]  Karen Sparck Jones A statistical interpretation of term specificity and its application in retrieval , 1972 .

[14]  Günter Rudolph,et al.  A cellular genetic algorithm with self-adjusting acceptance threshold , 1995 .

[15]  Michael D. Gordon Probabilistic and genetic algorithms in document retrieval , 1988, CACM.

[16]  Gary J. Koehler,et al.  A Markov chain analysis of genetic algorithms with power of 2 cardinality alphabets , 1997 .

[17]  Haldun Aytug,et al.  Stopping Criteria for Finite Length Genetic Algorithms , 1996, INFORMS J. Comput..

[18]  Hsinchun Chen,et al.  A smart itsy bitsy spider for the web , 1998 .

[19]  Karen Spärck Jones A statistical interpretation of term specificity and its application in retrieval , 2021, J. Documentation.

[20]  Vicente P. Guerrero-Bote,et al.  Order-based Fitness Functions for Genetic Algorithms Applied to Relevance Feedback , 2003, J. Assoc. Inf. Sci. Technol..

[21]  Dragomir R. Radev,et al.  Mining the web for answers to natural language questions , 2001, CIKM '01.

[22]  Scott Austin,et al.  An introduction to genetic algorithms , 1990 .

[23]  C. Morris,et al.  Psychology : An Introduction , 1968 .

[24]  Dan W. Patterson,et al.  Introduction to artificial intelligence and expert systems , 1990 .

[25]  Michael D. Gordon User‐based document clustering by redescribing subject descriptions with a genetic algorithm , 1991 .

[26]  Stephen Marshall,et al.  Convergence Criteria for Genetic Algorithms , 2000, SIAM J. Comput..

[27]  Z. Z. Nick,et al.  Web search using a genetic algorithm , 2001 .

[28]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[29]  Marshall Ramsey,et al.  An intelligent personal spider (agent) for dynamic Internet/Intranet searching , 1998, Decis. Support Syst..

[30]  Félix de Moya Anegón,et al.  A test of genetic algorithms in relevance feedback , 2002, Inf. Process. Manag..

[31]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[32]  Frederick E. Petry,et al.  Fuzzy Information Retrieval Using Genetic Algorithms and Relevance Feedback. , 1993 .

[33]  Weiguo Fan,et al.  Discovery of context-specific ranking functions for effective information retrieval using genetic programming , 2004, IEEE Transactions on Knowledge and Data Engineering.