On the long-time behaviour of soliton ensembles

The paper is focused on the details of the emergence of Korteweg-de Vries (KdV) solitons from an initial harmonic excitation. Although the problem is a classical one, numerical simulations over a large range of dispersion parameters in the long run have demonstrated new features: the existence of soliton ensembles including also virtual (hidden) solitons and the periodic patterns of the wave-profile maxima.

[1]  Recurrence of initial state of the Korteweg–de Vries equation , 1979 .

[2]  P. Hodnett,et al.  On the structure during interaction of the two-soliton solution of the Korteweg-de Vries equation , 1989 .

[3]  T. Yoneyama The Korteweg-de Vries Two-Soliton Solution as Interacting Two Single Solitons , 1984 .

[4]  J. Kalda,et al.  On the KdV soliton formation and discrete spectral analysis , 1996 .

[5]  Morikazu Toda,et al.  Waves in Nonlinear Lattice , 1970 .

[6]  Thiab R. Taha,et al.  Analytical and numerical aspects of certain nonlinear evolution equations. 1V. numerical modified Korteweg-de Vries equation , 1988 .

[7]  Internal structure of the two-soliton solution of the KdV equation , 1985 .

[8]  On the dynamics of Soliton interactions for the Korteweg-de Vries equation , 1992 .

[9]  Soliton creation and destruction, resonant interactions, and inelastic collisions in shallow water waves , 1998 .

[10]  P. Drazin,et al.  Solitons: An Introduction , 1989 .

[11]  P. Lax INTEGRALS OF NONLINEAR EQUATIONS OF EVOLUTION AND SOLITARY WAVES. , 1968 .

[12]  Katsuhiko Goda,et al.  Numerical Studies on Recurrence of the Korteweg-de Vries Equation , 1977 .

[13]  Timothy R. Marchant,et al.  Soliton interaction for the extended Korteweg-de Vries equation , 1996 .

[14]  Coupled Modes Approach to Non-linear Dispersive Wave (非線形現象の取扱いとその物理的課題に関する研究会報告) , 1976 .

[15]  J. Engelbrecht Nonlinear Wave Dynamics: Complexity and Simplicity , 1997 .

[16]  G. Lamb Elements of soliton theory , 1980 .

[17]  Bengt Fornberg,et al.  A practical guide to pseudospectral methods: Introduction , 1996 .

[18]  J. Hyman,et al.  Identifying coherent structures in nonlinear wave propagation. , 1991, Chaos.

[19]  Antonio Giorgilli,et al.  On the problem of energy equipartition for large systems of the Fermi-Pasta-Ulam type: analytical and numerical estimates , 1992 .

[20]  Antonello Provenzale,et al.  The Lorenz—Fermi—Pasta—Ulam experiment , 2000 .

[21]  Chaotic Behaviour of Nonlinear Evolution Equation with Fifth Order Dispersion , 1982 .

[22]  B. Fornberg,et al.  A review of pseudospectral methods for solving partial differential equations , 1994, Acta Numerica.

[23]  N. Zabusky,et al.  Interaction of "Solitons" in a Collisionless Plasma and the Recurrence of Initial States , 1965 .