Two Approaches for a Dividend Maximization Problem under an Ornstein-Uhlenbeck Interest Rate

We investigate a dividend maximization problem under stochastic interest rates with Ornstein-Uhlenbeck dynamics. This setup also takes negative rates into account. First a deterministic time is considered, where an explicit separating curve α(t) can be found to determine the optimal strategy at time t. In a second setting, we introduce a strategy-independent stopping time. The properties and behavior of these optimal control problems in both settings are analyzed in an analytical HJB-driven approach, and we also use backward stochastic differential equations.

[1]  Søren Asmussen,et al.  Controlled diffusion models for optimal dividend pay-out , 1997 .

[2]  Xun Yu Zhou,et al.  Relationship Between Backward Stochastic Differential Equations and Stochastic Controls: A Linear-Quadratic Approach , 2000, SIAM J. Control. Optim..

[3]  Benjamin Avanzi Strategies for Dividend Distribution: A Review , 2009 .

[4]  Michaela Szölgyenyi,et al.  A Deep Neural Network Algorithm for Semilinear Elliptic PDEs with Applications in Insurance Mathematics , 2020, Risks.

[5]  Hansjörg Albrecher,et al.  Optimality results for dividend problems in insurance , 2009 .

[6]  Huyen Pham,et al.  Continuous-time stochastic control and optimization with financial applications / Huyen Pham , 2009 .

[7]  N. Touzi Optimal Stochastic Control, Stochastic Target Problems, and Backward SDE , 2012 .

[8]  Zenji Yatabe,et al.  Ornstein–Uhlenbeck process in a human body weight fluctuation , 2021 .

[9]  J. Ma,et al.  Forward-Backward Stochastic Differential Equations and their Applications , 2007 .

[10]  P. Azcue,et al.  OPTIMAL REINSURANCE AND DIVIDEND DISTRIBUTION POLICIES IN THE CRAMÉR‐LUNDBERG MODEL , 2005 .

[11]  Tak Kuen Siu,et al.  Singular dividend optimization for a linear diffusion model with time-inconsistent preferences , 2020, Eur. J. Oper. Res..

[12]  Jared Chessari,et al.  Numerical Methods for Backward Stochastic Differential Equations: A Survey , 2021 .

[13]  S. Blomberg,et al.  Beyond Brownian Motion and the Ornstein-Uhlenbeck Process: Stochastic Diffusion Models for the Evolution of Quantitative Characters , 2020, The American Naturalist.

[14]  Optimal Dividend Policy with Random Interest Rates , 2014 .

[15]  Giorgio Ferrari,et al.  Optimal dividend payout under stochastic discounting , 2020, Mathematical Finance.

[16]  Arnulf Jentzen,et al.  Solving high-dimensional partial differential equations using deep learning , 2017, Proceedings of the National Academy of Sciences.

[17]  Michael Taksar,et al.  Stochastic Control in Insurance , 2010 .

[18]  Optimal dividends under a stochastic interest rate , 2015 .

[19]  Johannes Stübinger,et al.  Pairs trading with a mean-reverting jump–diffusion model on high-frequency data , 2018 .

[20]  D. Brigo,et al.  Interest Rate Models - Theory and Practice: With Smile, Inflation and Credit , 2001 .

[21]  S. Peng,et al.  Backward Stochastic Differential Equations in Finance , 1997 .

[22]  J. Bismut An Introductory Approach to Duality in Optimal Stochastic Control , 1978 .

[23]  Zhengjun Jiang,et al.  Optimal dividend distribution under Markov regime switching , 2008, Finance Stochastics.

[24]  R. Carmona Lectures on Bsdes, Stochastic Control, and Stochastic Differential Games with Financial Applications , 2016 .

[25]  É. Pardoux Backward Stochastic Differential Equations and Viscosity Solutions of Systems of Semilinear Parabolic and Elliptic PDEs of Second Order , 1998 .

[26]  Bernard Delyon,et al.  Lp solutions of backward stochastic differential equations , 2003 .

[27]  A. Borodin,et al.  Handbook of Brownian Motion - Facts and Formulae , 1996 .

[28]  É. Pardoux BSDEs, weak convergence and homogenization of semilinear PDEs , 1999 .

[29]  Stefan Thonhauser,et al.  On a dividend problem with random funding , 2019, European Actuarial Journal.

[30]  S. Peng,et al.  Adapted solution of a backward stochastic differential equation , 1990 .