Volcanic activity drives lacustrine carbon sequestration after Oceanic Anoxic Event 1a

[1]  W. Liu,et al.  Organic matter accumulations in the Santonian-Campanian (Upper Cretaceous) lacustrine Nenjiang shale (K2n) in the Songliao Basin, NE China: Terrestrial responses to OAE3? , 2022, International Journal of Coal Geology.

[2]  Zhaojun Liu,et al.  Terrestrial records of early cretaceous paleoclimate fluctuations in the Yin'e Basin, northern China: Evidence from sedimentology and palynomorphs in lacustrine sediments , 2022, Sedimentary Geology.

[3]  Q. Ma,et al.  High-precision geochronological constraints on the duration of ‘Dinosaur Pompeii’ and the Yixian Formation , 2021, National science review.

[4]  X. Shan,et al.  Response of a continental fault basin to the global OAE1a during the Aptian: Hongmiaozi Basin, Northeast China , 2021, Scientific Reports.

[5]  S. George,et al.  Organic petrology and geochemistry of Lower Cretaceous lacustrine sediments in the Chaoyang Basin (Liaoning Province, northeast China): Influence of volcanic ash on algal productivity and oil shale formation , 2020 .

[6]  Ding-wu Zhou,et al.  Characteristics and controlling factors of LORS from the Chang 7–3 section of the Triassic Yanchang Formation in the Ordos Basin , 2020, Journal of Petroleum Science and Engineering.

[7]  Wei Wei,et al.  Elemental proxies for paleosalinity analysis of ancient shales and mudrocks , 2020 .

[8]  Bo Liu,et al.  Mineralogy and element geochemistry of salinized lacustrine organic-rich shale in the Middle Permian Santanghu Basin: Implications for paleoenvironment, provenance, tectonic setting and shale oil potential , 2020 .

[9]  P. Sun,et al.  Sedimentary basin evolution, gravity flows, volcanism, and their impacts on the formation of the Lower Cretaceous oil shales in the Chaoyang Basin, northeastern China , 2020 .

[10]  Jianyong Xu,et al.  Lacustrine environmental evolution and implications on source rock deposition in the Upper Cretaceous-Paleocene of the South Yellow Sea Basin, offshore eastern China , 2020 .

[11]  D. Lunt,et al.  Unravelling the sources of carbon emissions at the onset of Oceanic Anoxic Event (OAE) 1a , 2020, Earth and Planetary Science Letters.

[12]  H. Cao,et al.  Correlation of carbon isotope stratigraphy and paleoenvironmental conditions in the Cretaceous Jehol Group, northeastern China , 2020, International Geology Review.

[13]  H. Rahimpour-Bonab,et al.  Coated grain petrography and geochemistry as palaeoenvironmental proxies for the Aptian strata of the southern Neo-Tethys Ocean, Persian Gulf, Iran , 2019, Facies.

[14]  M. Palmer,et al.  The role of tephra in enhancing organic carbon preservation in marine sediments , 2019, Earth-Science Reviews.

[15]  P. Sun,et al.  Lake evolution and its influence on the formation of oil shales in the Middle Jurassic Shimengou Formation in the Tuanyushan area, Qaidam Basin, NW China , 2019, Geochemistry.

[16]  F. Maurrasse,et al.  Continuous accumulation of organic matter-rich sediments associated with Oceanic Anoxic Event 1a in the El Pujal section, Organyà Basin, Catalunyà Spain and its relation to episodic dysoxia , 2019, Cretaceous Research.

[17]  Yu Song,et al.  Warm-humid paleoclimate control of salinized lacustrine organic-rich shale deposition in the Oligocene Hetaoyuan Formation of the Biyang Depression, East China , 2019, International Journal of Coal Geology.

[18]  S. George,et al.  Biomarker signatures of Upper Cretaceous Latrobe Group hydrocarbon source rocks, Gippsland Basin, Australia: Distribution and palaeoenvironment significance of aliphatic hydrocarbons , 2018, International Journal of Coal Geology.

[19]  Cin-Ty A. Lee,et al.  Volcanic ash as a driver of enhanced organic carbon burial in the Cretaceous , 2018, Scientific Reports.

[20]  S. Graham,et al.  Evaluating Late Cretaceous OAEs and the influence of marine incursions on organic carbon burial in an expansive East Asian paleo-lake , 2018 .

[21]  S. Brassell,et al.  Cretaceous sea-surface temperature evolution: Constraints from TEX86 and planktonic foraminiferal oxygen isotopes , 2017 .

[22]  R. Pancost,et al.  Carbon sequestration in an expanded lake system during the Toarcian oceanic anoxic event , 2017 .

[23]  T. Sun,et al.  Paleoceanographic evolution and chronostratigraphy of the Aptian Oceanic Anoxic Event 1a (OAE1a) to oceanic red bed 1 (ORB1) in the Gorgo a Cerbara section (central Italy) , 2016 .

[24]  J. Sha,et al.  Lacustrine sedimentary record of early Aptian carbon cycle perturbation in western Liaoning, China , 2016 .

[25]  Pujun Wang,et al.  Aptian giant explosive volcanic eruptions in the Songliao Basin and northeast Asia: A possible cause for global climate change and OAE-1a , 2016 .

[26]  Yongxin Pan,et al.  Relationship of pyroclastic volcanism and lake-water acidification to Jehol Biota mass mortality events (Early Cretaceous, northeastern China) , 2016 .

[27]  T. Steuber,et al.  Large igneous provinces and organic carbon burial: Controls on global temperature and continental weathering during the Early Cretaceous , 2015 .

[28]  A. Malinverno,et al.  Environmental consequences of Ontong Java Plateau and Kerguelen Plateau volcanism , 2015 .

[29]  M. Kaminski,et al.  The Barremian and Aptian stepwise development of the ‘Oceanic Anoxic Event 1a’ (OAE 1a) crisis: Integrated benthic and planktic high-resolution palaeoecology along the Gorgo a Cerbara stratotype section (Umbria–Marche Basin, Italy) , 2015 .

[30]  Stefan Schouten,et al.  Climate variability and ocean fertility during the Aptian Stage , 2015 .

[31]  A. Fildani,et al.  U-PB zircon tuff geochronology from the Karoo Basin, South Africa: implications of zircon recycling on stratigraphic age controls , 2015 .

[32]  W. Guo,et al.  CHARACTERISTICS AND COMPREHENSIVE UTILIZATION POTENTIAL OF OIL SHALE OF THE YIN'E BASIN, INNER MONGOLIA, CHINA , 2015 .

[33]  Zhonghe Zhou The Jehol Biota, an Early Cretaceous terrestrial Lagerstätte: new discoveries and implications , 2014 .

[34]  Stefan Schouten,et al.  High sea-surface temperatures during the early Aptian Oceanic Anoxic Event 1a in the Boreal Realm , 2014 .

[35]  Bainian Sun,et al.  Paleo-CO2 variation trends and the Cretaceous greenhouse climate , 2014 .

[36]  Changhai Yin,et al.  Formation and accumulation of tight sandy conglomerate gas: A case from the Lower Cretaceous Yingcheng Formation of Xujiaweizi fault depression, Songliao Basin , 2013 .

[37]  Zhonghe Zhou,et al.  The Jehol Biota: Definition and distribution of exceptionally preserved relicts of a continental Early Cretaceous ecosystem , 2013 .

[38]  S. Strobl,et al.  Oil shale formation in the Upper Cretaceous Nenjiang Formation of the Songliao Basin (NE China): Implications from organic and inorganic geochemical analyses , 2013 .

[39]  G. Batt,et al.  Early Cretaceous provenance change in the southern Hailar Basin, northeastern China and its implication for basin evolution , 2013 .

[40]  R. Graziano Sedimentology, biostratigraphy and event stratigraphy of the Early Aptian Oceanic Anoxic Event (OAE1A) in the Apulia Carbonate Platform Margin – Ionian Basin System (Gargano Promontory, southern Italy) , 2013 .

[41]  Xiumian Hu,et al.  Stratigraphic transition and palaeoenvironmental changes from the Aptian oceanic anoxic event 1a (OAE1a) to the oceanic red bed 1 (ORB1) in the Yenicesihlar section, central Turkey , 2012 .

[42]  R. Pancost,et al.  Organic geochemistry, stable isotopes, and facies analysis of the Early Aptian OAE-New records from Spain (Western Tethys) , 2012 .

[43]  K. Föllmi Early Cretaceous life, climate and anoxia , 2012 .

[44]  Baoyu Jiang,et al.  Depositional evolution of the Early Cretaceous Sihetun Lake and implications for regional climatic and volcanic history in western Liaoning, NE China , 2012 .

[45]  A. Malinverno,et al.  M‐sequence geomagnetic polarity time scale (MHTC12) that steadies global spreading rates and incorporates astrochronology constraints , 2012 .

[46]  R. Slatt,et al.  Lithofacies and sequence stratigraphy of the Barnett Shale in east-central Fort Worth Basin, Texas , 2012 .

[47]  S. Bernasconi,et al.  A volcanically induced climate warming and floral change preceded the onset of OAE1a (Early Cretaceous) , 2011 .

[48]  W. Kuhnt,et al.  Transient global cooling at the onset of early Aptian oceanic anoxic event (OAE) 1a , 2011 .

[49]  T. Herbert,et al.  Orbital tuning as an inverse problem: Chronology of the early Aptian oceanic anoxic event 1a (Selli Level) in the Cismon APTICORE , 2010 .

[50]  K. Zaksek,et al.  Volcanic ash as fertiliser for the surface ocean , 2010 .

[51]  S. Bernasconi,et al.  A volcanic CO2 pulse triggered the Cretaceous Oceanic Anoxic Event 1a and a biocalcification crisis , 2009 .

[52]  J. Mahoney,et al.  Ontong Java Plateau eruption as a trigger for the early Aptian oceanic anoxic event , 2009 .

[53]  P. Renne,et al.  High-precision 40Ar/39Ar age for the Jehol Biota , 2008 .

[54]  T. Herbert,et al.  Toward an orbital chronology for the early Aptian Oceanic Anoxic Event (OAE1a, ~ 120 Ma) , 2008 .

[55]  Yanhong Pan,et al.  Late Mesozoic transgressions of eastern Heilongjiang and their significance in tectonics, and coal and oil accumulation in northeast China , 2008 .

[56]  K. Kaiho,et al.  Timing and magnitude of early Aptian extreme warming: Unraveling primary δ18O variation in indurated pelagic carbonates at Deep Sea Drilling Project Site 463, central Pacific Ocean , 2008 .

[57]  R. Miller,et al.  Zircon growth and recycling during the assembly of large, composite arc plutons , 2007 .

[58]  J. Sha Cretaceous stratigraphy of northeast China: non-marine and marine correlation , 2007 .

[59]  S. Graham,et al.  Upper crustal response to Mesozoic tectonism in western Liaoning, North China, and implications for lithospheric delamination , 2007 .

[60]  W. Griffin,et al.  Trace element and isotopic composition of GJ-red zircon standard by laser ablation , 2006 .

[61]  S. Wilde,et al.  Nature and significance of the Early Cretaceous giant igneous event in eastern China , 2005 .

[62]  J. Volkman Sterols and other triterpenoids: source specificity and evolution of biosynthetic pathways , 2005 .

[63]  William L. Griffin,et al.  The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology , 2004 .

[64]  G. Shi,et al.  Timing of the Jiufotang Formation (Jehol Group) in Liaoning, northeastern China, and its implications , 2004 .

[65]  A. Glazner,et al.  Rethinking the emplacement and evolution of zoned plutons: Geochronologic evidence for incremental assembly of the Tuolumne Intrusive Suite, California , 2004 .

[66]  Xiaolin Wang,et al.  Effect of Mesozoic volcanic eruptions in the western Liaoning Province, China on paleoclimate and paleoenvironment , 2003 .

[67]  H. Jenkyns Evidence for rapid climate change in the Mesozoic–Palaeogene greenhouse world , 2003, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[68]  S. Bowring,et al.  High-Precision U-Pb Zircon Geochronology and the Stratigraphic Record , 2003 .

[69]  K. Ludwig User's Manual for Isoplot 3.00 - A Geochronological Toolkit for Microsoft Excel , 2003 .

[70]  R. Leckie,et al.  Oceanic anoxic events and plankton evolution: Biotic response to tectonic forcing during the mid-Cretaceous , 2002 .

[71]  A. Ando,et al.  New perspective on Aptian carbon isotope stratigraphy: Data from δ13C records of terrestrial organic matter , 2002 .

[72]  L. Legendre,et al.  Roles of food web and heterotrophic microbial processes in upper ocean biogeochemistry: Global patterns and processes , 2002, Ecological Research.

[73]  Zhang Junxia,et al.  Late Mesozoic and Cenozoic rifting and its dynamic setting in Eastern China and adjacent areas , 2002 .

[74]  P. Freytet,et al.  Lacustrine and palustrine carbonate petrography: an overview , 2002 .

[75]  M. Lomas,et al.  On the nature of methane gas-hydrate dissociation during the Toarcian and Aptian Oceanic anoxic events , 2002 .

[76]  K. Wallmann Controls on the cretaceous and cenozoic evolution of seawater composition, atmospheric CO2 and climate , 2001 .

[77]  P. Wignall Large igneous provinces and mass extinctions , 2001 .

[78]  R. Amundson,et al.  Terrestrial record of methane hydrate dissociation in the Early Cretaceous , 2001 .

[79]  W. Gen TECTONIC FRAMEWORK OF WESTERN LIAONING PROVINCE AND ITS EVOLUTION DURING MESOZOIC , 2001 .

[80]  M. Middleton,et al.  Structure of the Lithosphere and Mesozoic Sedimentary Basins in Western Liaoning, Northern Liaoning, and Songliao, Northeast China , 2000 .

[81]  R. Tyson,et al.  High‐resolution δ13C stratigraphy through the Early Aptian “Livello selli” of the Alpine tethys , 1998 .

[82]  A. Mackensen,et al.  Palaeoproductivity at the Antarctic continental margin: opal and barium records for the last 400 ka , 1998 .

[83]  S. M. Barrett,et al.  UNUSUAL DIHYDROXYSTEROLS AS CHEMOTAXONOMIC MARKERS FOR MICROALGAE FROM THE ORDER PAVLOVALES (HAPTOPHYCEAE) 1 , 1997 .

[84]  R. Jonas Bacteria, Dissolved Organics and Oxygen Consumption in Salinity Stratified Chesapeake Bay, an Anoxia Paradigm , 1997 .

[85]  J. Hayes,et al.  Evidence for gammacerane as an indicator of water column stratification. , 1995, Geochimica et cosmochimica acta.

[86]  W. Griffin,et al.  THREE NATURAL ZIRCON STANDARDS FOR U‐TH‐PB, LU‐HF, TRACE ELEMENT AND REE ANALYSES , 1995 .

[87]  R. Leckie,et al.  Timing and Paleoceanography of Oceanic Dysoxia/Anoxia in the Late Barremian to Early Aptian (Early Cretaceous) , 1994 .

[88]  G. Koschek Origin and significance of the SEM cathodoluminescence from zircon , 1993 .

[89]  S. M. Barrett,et al.  Geochemical significance of the occurrence of dinosterol and other 4-methyl sterols in a marine diatom , 1993 .

[90]  Kehui Xu,et al.  The Mesozoic-Cenozoic East China rift system , 1992 .

[91]  E. Suess,et al.  Barium in Deep‐Sea Sediment: A Geochemical Proxy for Paleoproductivity , 1992 .

[92]  S. Brassell,et al.  Biological markers in lacustrine Chinese oil shales , 1988, Geological Society, London, Special Publications.

[93]  N. Óskarsson The interaction between volcanic gases and tephra: Fluorine adhering to tephra of the 1970 hekla eruption , 1980 .

[94]  B. Simoneit,et al.  Organic geochemical indicators of palaeoenvironmental conditions of sedimentation , 1978 .

[95]  L. Black,et al.  THE AGE OF THE MUD TANK CARBONATITE, STRANGWAYS RANGE, NORTHERN TERRITORY , 1978 .