Ergodic Theory and Dynamical Systems

We consider actions of locally compact groups G on certain CAT(0) spaces X by isometries. The CAT(0) spaces we consider have finite dimension at large scale. In case B is a G-boundary, that is a measurable G-space with some amenability and ergodicity properties, we prove the existence of equivariant maps from B to the visual boundary ∂X .

[1]  D. Segal PROFINITE GROUPS (London Mathematical Society Monographs N.S. 19) By J OHN S. W ILSON : 284 pp., £60.00, ISBN 0 19 850082 3 (Clarendon Press, 1998). , 1999 .

[2]  V. Kaimanovich Double ergodicity of the Poisson boundary and applications to bounded cohomology , 2003 .

[3]  Gregory Margulis,et al.  Discrete Subgroups of Semisimple Lie Groups , 1991 .

[4]  B. Weiss,et al.  Kazhdan's Property T and the Geometry of the Collection of Invariant Measures , 1997 .

[5]  Gregory Margulis,et al.  A Multiplicative Ergodic Theorem and Nonpositively Curved Spaces , 1999 .

[6]  Heinrich W. E. Jung Ueber die kleinste Kugel, die eine räumliche Figur einschliesst. , 1901 .

[7]  Balint Virag,et al.  Dimension and randomness in groups acting on rooted trees , 2004 .

[8]  M. Burger,et al.  Continuous bounded cohomology and applications to rigidity theory , 2001 .

[9]  Greg Hjorth,et al.  Rigidity Theorems For Actions Of Product Groups And Countable Borel Equivalence Relations , 2005 .

[10]  Superrigidity for irreducible lattices and geometric splitting , 2005, math/0504241.

[11]  Béla Bollobás,et al.  The independence ratio of regular graphs , 1981 .

[12]  Strongly approximately transitive group actions, the Choquet-Deny theorem, and polynomial growth , 1994 .

[13]  Y. Cho,et al.  Discrete Groups , 1994 .

[14]  N. Monod,et al.  Isometry groups of non‐positively curved spaces: structure theory , 2008, 0809.0457.

[15]  Graham A. Niblo,et al.  Asymptotic invariants of infinite groups , 1993 .

[16]  Berndt Farwer,et al.  ω-automata , 2002 .

[17]  Miklós Abért,et al.  The rank gradient from a combinatorial viewpoint , 2007, math/0701925.

[18]  Madhav Desai,et al.  A characterization of the smallest eigenvalue of a graph , 1994, J. Graph Theory.

[19]  Measurable functions and almost continuous functions , 1981 .

[20]  R. Zimmer Amenable ergodic group actions and an application to Poisson boundaries of random walks , 1978 .

[21]  M. Bridson,et al.  Metric Spaces of Non-Positive Curvature , 1999 .

[22]  B. Weiss,et al.  An anti-classification theorem for ergodic measure preserving transformations , 2004 .

[23]  K. Gruenberg Residual Properties of Infinite Soluble Groups , 1957 .

[24]  B. Kleiner The local structure of length spaces with curvature bounded above , 1999 .

[25]  Yehuda Shalom,et al.  Expanding graphs and invariant means , 1997, Comb..

[26]  Harry Furstenberg,et al.  A POISSON FORMULA FOR SEMI-SIMPLE LIE GROUPS* , 1963 .

[27]  Harry Furstenberg,et al.  Boundary theory and stochastic processes on homogeneous spaces , 1973 .

[28]  N. A'campo,et al.  Réseaux arithmétiques et commensurateur d'après G.A. Margulis , 1994 .

[29]  Lewis Bowen Periodicity and Circle Packings of the Hyperbolic Plane , 2003 .

[30]  W. Ballmann,et al.  Amenable isometry groups of Hadamard spaces , 1998 .

[31]  Benjamin Weiss,et al.  Property T and asymptotically invariant sequences , 1980 .

[32]  U. Lang,et al.  Jung's Theorem for Alexandrov Spaces of Curvature Bounded Above , 1997 .

[33]  J. Friedman Relative expanders or weakly relatively Ramanujan graphs , 2003 .

[34]  The Poisson formula for groups with hyperbolic properties , 1998, math/9802132.

[35]  Graham A. Niblo METRIC SPACES OF NON‐POSITIVE CURVATURE (Grundlehren der Mathematischen Wissenschaften 319) , 2001 .