Ergodic Theory and Dynamical Systems
暂无分享,去创建一个
U. Bader | Bruno Duchesne | Jean Lécureux | URI BADER | BRUNO DUCHESNE | JEAN LÉCUREUX | M. Abért | G. Elek
[1] D. Segal. PROFINITE GROUPS (London Mathematical Society Monographs N.S. 19) By J OHN S. W ILSON : 284 pp., £60.00, ISBN 0 19 850082 3 (Clarendon Press, 1998). , 1999 .
[2] V. Kaimanovich. Double ergodicity of the Poisson boundary and applications to bounded cohomology , 2003 .
[3] Gregory Margulis,et al. Discrete Subgroups of Semisimple Lie Groups , 1991 .
[4] B. Weiss,et al. Kazhdan's Property T and the Geometry of the Collection of Invariant Measures , 1997 .
[5] Gregory Margulis,et al. A Multiplicative Ergodic Theorem and Nonpositively Curved Spaces , 1999 .
[6] Heinrich W. E. Jung. Ueber die kleinste Kugel, die eine räumliche Figur einschliesst. , 1901 .
[7] Balint Virag,et al. Dimension and randomness in groups acting on rooted trees , 2004 .
[8] M. Burger,et al. Continuous bounded cohomology and applications to rigidity theory , 2001 .
[9] Greg Hjorth,et al. Rigidity Theorems For Actions Of Product Groups And Countable Borel Equivalence Relations , 2005 .
[10] Superrigidity for irreducible lattices and geometric splitting , 2005, math/0504241.
[11] Béla Bollobás,et al. The independence ratio of regular graphs , 1981 .
[12] Strongly approximately transitive group actions, the Choquet-Deny theorem, and polynomial growth , 1994 .
[13] Y. Cho,et al. Discrete Groups , 1994 .
[14] N. Monod,et al. Isometry groups of non‐positively curved spaces: structure theory , 2008, 0809.0457.
[15] Graham A. Niblo,et al. Asymptotic invariants of infinite groups , 1993 .
[16] Berndt Farwer,et al. ω-automata , 2002 .
[17] Miklós Abért,et al. The rank gradient from a combinatorial viewpoint , 2007, math/0701925.
[18] Madhav Desai,et al. A characterization of the smallest eigenvalue of a graph , 1994, J. Graph Theory.
[19] Measurable functions and almost continuous functions , 1981 .
[20] R. Zimmer. Amenable ergodic group actions and an application to Poisson boundaries of random walks , 1978 .
[21] M. Bridson,et al. Metric Spaces of Non-Positive Curvature , 1999 .
[22] B. Weiss,et al. An anti-classification theorem for ergodic measure preserving transformations , 2004 .
[23] K. Gruenberg. Residual Properties of Infinite Soluble Groups , 1957 .
[24] B. Kleiner. The local structure of length spaces with curvature bounded above , 1999 .
[25] Yehuda Shalom,et al. Expanding graphs and invariant means , 1997, Comb..
[26] Harry Furstenberg,et al. A POISSON FORMULA FOR SEMI-SIMPLE LIE GROUPS* , 1963 .
[27] Harry Furstenberg,et al. Boundary theory and stochastic processes on homogeneous spaces , 1973 .
[28] N. A'campo,et al. Réseaux arithmétiques et commensurateur d'après G.A. Margulis , 1994 .
[29] Lewis Bowen. Periodicity and Circle Packings of the Hyperbolic Plane , 2003 .
[30] W. Ballmann,et al. Amenable isometry groups of Hadamard spaces , 1998 .
[31] Benjamin Weiss,et al. Property T and asymptotically invariant sequences , 1980 .
[32] U. Lang,et al. Jung's Theorem for Alexandrov Spaces of Curvature Bounded Above , 1997 .
[33] J. Friedman. Relative expanders or weakly relatively Ramanujan graphs , 2003 .
[34] The Poisson formula for groups with hyperbolic properties , 1998, math/9802132.
[35] Graham A. Niblo. METRIC SPACES OF NON‐POSITIVE CURVATURE (Grundlehren der Mathematischen Wissenschaften 319) , 2001 .