Dealing with Ill Conditioning in Recursive Parameter Estimation for a Synchronous Generator

This paper presents how to deal with ill-conditioning in recursive parameter identification for a synchronous generator using subset selection, the extended Kalman filter (EKF), and the iterated extended Kalman filter (IEKF). The problem of ill conditioning of the parameter estimation is caused by system inputs that are not rich enough to fully excite all system modes. We present how the quality of parameter estimated for ill-conditioned parameter estimation problems is significantly affected by noise and we show how by proper modifications to the EKF we still extract useful parameter estimates from low quality data. The methodology is based on the subset selection method, where a subset of parameters is fixed to prior values to reduce the ill-conditioning of the estimation problem. Simulation studies using a linearized model of a synchronous generator are presented to illustrate the concepts being studied in this work

[1]  P. Kundur,et al.  Power system stability and control , 1994 .

[2]  Petre Stoica,et al.  Decentralized Control , 2018, The Control Systems Handbook.

[3]  M. Velez-Reyes,et al.  Conditioning analysis of parameter estimation in a synchronous generator , 2001, IEMDC 2001. IEEE International Electric Machines and Drives Conference (Cat. No.01EX485).

[4]  Arthur Gelb,et al.  Applied Optimal Estimation , 1974 .

[5]  G.T. Heydt,et al.  On-line estimation of synchronous Generator parameters using a damper current observer and a graphic user interface , 2004, IEEE Transactions on Energy Conversion.

[6]  Zhengming Zhao,et al.  A dynamic on-line parameter identification and full-scale system experimental verification for large synchronous machines , 1995 .

[7]  O. Malik,et al.  Estimation of synchronous generator parameters using an adaptive parameter estimator , 2005, IEEE Power Engineering Society General Meeting, 2005.

[8]  Š.,et al.  Neural Network Observers for On-line Tracking of Synchronous Generator Parameters , 2004 .

[9]  Maxime Gautier,et al.  Estimation of the synchronous drive electrical parameters , 1995, Proceedings of International Conference on Control Applications.

[10]  H. J. Vermeulen,et al.  On-line estimation of synchronous generator parameters using PRBS perturbations , 2003, 2003 IEEE Power Engineering Society General Meeting (IEEE Cat. No.03CH37491).

[11]  Ali Keyhani,et al.  Identification of armature circuit and field winding parameters of large utility generators , 1999, IEEE Power Engineering Society. 1999 Winter Meeting (Cat. No.99CH36233).

[12]  Adam G. Polak,et al.  Indirect measurements: combining parameter selection with ridge regression , 2001 .

[13]  Miguel Velez-Reyes,et al.  Decomposed algorithms for parameter estimation , 1992 .

[14]  G. Verghese,et al.  Subset selection for improved parameter estimation in on-line identification of a synchronous generator , 1999 .

[15]  Vassilis L. Syrmos,et al.  System identification using the extended Kalman filter with applications to medical imaging , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[16]  Chung-Liang Chang,et al.  On-line measurement-based model parameter estimation for synchronous generators: solution algorithm and numerical studies , 1994 .